Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.09667
Cited By
Information Directed Sampling and Bandits with Heteroscedastic Noise
29 January 2018
Johannes Kirschner
Andreas Krause
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Information Directed Sampling and Bandits with Heteroscedastic Noise"
22 / 22 papers shown
Title
Improved Regret Analysis in Gaussian Process Bandits: Optimality for Noiseless Reward, RKHS norm, and Non-Stationary Variance
S. Iwazaki
Shion Takeno
76
1
0
10 Feb 2025
Second Order Bounds for Contextual Bandits with Function Approximation
Aldo Pacchiano
42
4
0
24 Sep 2024
A Unified Confidence Sequence for Generalized Linear Models, with Applications to Bandits
Junghyun Lee
Se-Young Yun
Kwang-Sung Jun
28
4
0
19 Jul 2024
Variance-Dependent Regret Bounds for Non-stationary Linear Bandits
Zhiyong Wang
Jize Xie
Yi Chen
J. C. Lui
Dongruo Zhou
28
0
0
15 Mar 2024
TS-RSR: A provably efficient approach for batch bayesian optimization
Zhaolin Ren
Na Li
29
2
0
07 Mar 2024
BOF-UCB: A Bayesian-Optimistic Frequentist Algorithm for Non-Stationary Contextual Bandits
Nicklas Werge
Abdullah Akgul
M. Kandemir
33
0
0
07 Jul 2023
Geometry-Aware Approaches for Balancing Performance and Theoretical Guarantees in Linear Bandits
Yuwei Luo
Mohsen Bayati
10
1
0
26 Jun 2023
SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits
Subhojyoti Mukherjee
Qiaomin Xie
Josiah P. Hanna
R. Nowak
OffRL
39
5
0
29 Jan 2023
Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision Processes
Jiafan He
Heyang Zhao
Dongruo Zhou
Quanquan Gu
OffRL
33
53
0
12 Dec 2022
Movement Penalized Bayesian Optimization with Application to Wind Energy Systems
Shyam Sundhar Ramesh
Pier Giuseppe Sessa
Andreas Krause
Ilija Bogunovic
10
12
0
14 Oct 2022
Active Exploration via Experiment Design in Markov Chains
Mojmír Mutný
Tadeusz Janik
Andreas Krause
31
14
0
29 Jun 2022
Lifting the Information Ratio: An Information-Theoretic Analysis of Thompson Sampling for Contextual Bandits
Gergely Neu
Julia Olkhovskaya
Matteo Papini
Ludovic Schwartz
31
16
0
27 May 2022
Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial Corruptions
Jiafan He
Dongruo Zhou
Tong Zhang
Quanquan Gu
61
46
0
13 May 2022
Truncated LinUCB for Stochastic Linear Bandits
Yanglei Song
Meng zhou
42
0
0
23 Feb 2022
Bayesian Optimization for Distributionally Robust Chance-constrained Problem
Yu Inatsu
Shion Takeno
Masayuki Karasuyama
Ichiro Takeuchi
7
13
0
31 Jan 2022
Apple Tasting Revisited: Bayesian Approaches to Partially Monitored Online Binary Classification
James A. Grant
David S. Leslie
34
3
0
29 Sep 2021
Exploration in Deep Reinforcement Learning: From Single-Agent to Multiagent Domain
Jianye Hao
Tianpei Yang
Hongyao Tang
Chenjia Bai
Jinyi Liu
Zhaopeng Meng
Peng Liu
Zhen Wang
OffRL
28
92
0
14 Sep 2021
Metalearning Linear Bandits by Prior Update
Amit Peleg
Naama Pearl
Ron Meir
32
18
0
12 Jul 2021
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
20
82
0
15 Jun 2020
Weighted Linear Bandits for Non-Stationary Environments
Yoan Russac
Claire Vernade
Olivier Cappé
82
101
0
19 Sep 2019
Stochastic Bandits with Context Distributions
Johannes Kirschner
Andreas Krause
13
30
0
06 Jun 2019
Max-value Entropy Search for Efficient Bayesian Optimization
Zi Wang
Stefanie Jegelka
110
403
0
06 Mar 2017
1