Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1802.00420
Cited By
v1
v2
v3
v4 (latest)
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
1 February 2018
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples"
50 / 1,983 papers shown
Adversarial Examples Are Not Real Features
Neural Information Processing Systems (NeurIPS), 2023
Ang Li
Yifei Wang
Yiwen Guo
Yisen Wang
632
20
0
29 Oct 2023
Purify++: Improving Diffusion-Purification with Advanced Diffusion Models and Control of Randomness
Boya Zhang
Weijian Luo
Zhihua Zhang
232
16
0
28 Oct 2023
DiffAttack: Evasion Attacks Against Diffusion-Based Adversarial Purification
Neural Information Processing Systems (NeurIPS), 2023
Mintong Kang
Basel Alomair
Yue Liu
339
48
0
27 Oct 2023
Detection Defenses: An Empty Promise against Adversarial Patch Attacks on Optical Flow
IEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2023
Erik Scheurer
Jenny Schmalfuss
Alexander Lis
Andrés Bruhn
AAML
198
6
0
26 Oct 2023
Multi-scale Diffusion Denoised Smoothing
Neural Information Processing Systems (NeurIPS), 2023
Jongheon Jeong
Jinwoo Shin
DiffM
336
14
0
25 Oct 2023
Fast Propagation is Better: Accelerating Single-Step Adversarial Training via Sampling Subnetworks
IEEE Transactions on Information Forensics and Security (IEEE TIFS), 2023
Yang Liu
Jianshu Li
Jindong Gu
Yang Bai
Xiaochun Cao
AAML
231
14
0
24 Oct 2023
AutoDAN: Interpretable Gradient-Based Adversarial Attacks on Large Language Models
Sicheng Zhu
Ruiyi Zhang
Bang An
Gang Wu
Joe Barrow
Zichao Wang
Furong Huang
A. Nenkova
Tong Sun
SILM
AAML
246
86
0
23 Oct 2023
Toward Stronger Textual Attack Detectors
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2023
Pierre Colombo
Marine Picot
Nathan Noiry
Guillaume Staerman
Pablo Piantanida
818
5
0
21 Oct 2023
An LLM can Fool Itself: A Prompt-Based Adversarial Attack
Xilie Xu
Keyi Kong
Ning Liu
Li-zhen Cui
Haiyan Zhao
Jingfeng Zhang
Mohan Kankanhalli
AAML
SILM
272
128
0
20 Oct 2023
OODRobustBench: a Benchmark and Large-Scale Analysis of Adversarial Robustness under Distribution Shift
Lin Li
Yifei Wang
Chawin Sitawarin
Michael W. Spratling
321
12
0
19 Oct 2023
IRAD: Implicit Representation-driven Image Resampling against Adversarial Attacks
International Conference on Learning Representations (ICLR), 2023
Yue Cao
Tianlin Li
Xiaofeng Cao
Ivor Tsang
Yang Liu
Qing Guo
AAML
262
4
0
18 Oct 2023
Quantifying Assistive Robustness Via the Natural-Adversarial Frontier
Conference on Robot Learning (CoRL), 2023
Jerry Zhi-Yang He
Zackory M. Erickson
Daniel S. Brown
Anca Dragan
AAML
235
1
0
16 Oct 2023
On the Over-Memorization During Natural, Robust and Catastrophic Overfitting
International Conference on Learning Representations (ICLR), 2023
Runqi Lin
Chaojian Yu
Bo Han
Tongliang Liu
244
18
0
13 Oct 2023
Provably Cost-Sensitive Adversarial Defense via Randomized Smoothing
Yuan Xin
Dingfan Chen
Michael Backes
Xiao Zhang
AAML
275
0
0
12 Oct 2023
Promoting Robustness of Randomized Smoothing: Two Cost-Effective Approaches
Industrial Conference on Data Mining (IDM), 2023
Linbo Liu
T. Hoang
Lam M. Nguyen
Tsui-Wei Weng
AAML
143
0
0
11 Oct 2023
A Geometrical Approach to Evaluate the Adversarial Robustness of Deep Neural Networks
Yang Wang
B. Dong
Ke Xu
Haiyin Piao
Yufei Ding
Baocai Yin
Xin Yang
AAML
175
3
0
10 Oct 2023
Jailbreak and Guard Aligned Language Models with Only Few In-Context Demonstrations
Zeming Wei
Yifei Wang
Ang Li
Yichuan Mo
Yisen Wang
377
405
0
10 Oct 2023
Certification of Deep Learning Models for Medical Image Segmentation
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2023
Othmane Laousy
Alexandre Araujo
G. Chassagnon
Nikos Paragios
M. Revel
Maria Vakalopoulou
MedIm
244
3
0
05 Oct 2023
Splitting the Difference on Adversarial Training
USENIX Security Symposium (USENIX Security), 2023
Matan Levi
A. Kontorovich
236
8
0
03 Oct 2023
Probabilistic Reach-Avoid for Bayesian Neural Networks
Artificial Intelligence (AIJ), 2023
Matthew Wicker
Luca Laurenti
A. Patané
Nicola Paoletti
Alessandro Abate
Marta Z. Kwiatkowska
183
7
0
03 Oct 2023
A Survey of Robustness and Safety of 2D and 3D Deep Learning Models Against Adversarial Attacks
ACM Computing Surveys (ACM Comput. Surv.), 2023
Yanjie Li
Bin Xie
Songtao Guo
Yuanyuan Yang
Bin Xiao
AAML
264
36
0
01 Oct 2023
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
Neural Information Processing Systems (NeurIPS), 2023
Ambar Pal
Huaijin Hao
Rene Vidal
278
9
0
28 Sep 2023
Structure Invariant Transformation for better Adversarial Transferability
IEEE International Conference on Computer Vision (ICCV), 2023
Xiaosen Wang
Zeliang Zhang
Jianping Zhang
AAML
206
108
0
26 Sep 2023
Projected Randomized Smoothing for Certified Adversarial Robustness
Samuel Pfrommer
Brendon G. Anderson
Somayeh Sojoudi
AAML
221
17
0
25 Sep 2023
Language Guided Adversarial Purification
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2023
Himanshu Singh
A. V. Subramanyam
AAML
168
2
0
19 Sep 2023
Mitigating Adversarial Attacks in Federated Learning with Trusted Execution Environments
IEEE International Conference on Distributed Computing Systems (ICDCS), 2023
Simon Queyrut
V. Schiavoni
Pascal Felber
AAML
FedML
210
15
0
13 Sep 2023
Exploring Non-additive Randomness on ViT against Query-Based Black-Box Attacks
British Machine Vision Conference (BMVC), 2023
Jindong Gu
Fangyun Wei
Juil Sock
Han Hu
AAML
187
1
0
12 Sep 2023
Using Reed-Muller Codes for Classification with Rejection and Recovery
Foundations and Practice of Security (FPS), 2023
Daniel Fentham
David Parker
Mark Ryan
111
0
0
12 Sep 2023
Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts
International Conference on Machine Learning (ICML), 2023
Zhi-Yi Chin
Chieh-Ming Jiang
Ching-Chun Huang
Pin-Yu Chen
Wei-Chen Chiu
DiffM
366
123
0
12 Sep 2023
Exploring Robust Features for Improving Adversarial Robustness
IEEE Transactions on Cybernetics (IEEE Trans. Cybern.), 2023
Hong Wang
Yuefan Deng
Shinjae Yoo
Lu Ma
AAML
337
5
0
09 Sep 2023
Optimal Transport Regularized Divergences: Application to Adversarial Robustness
Jeremiah Birrell
Mohammadreza Ebrahimi
FedML
AAML
311
0
0
07 Sep 2023
Certifying LLM Safety against Adversarial Prompting
Aounon Kumar
Chirag Agarwal
Suraj Srinivas
Aaron Jiaxun Li
Soheil Feizi
Himabindu Lakkaraju
AAML
714
273
0
06 Sep 2023
Hindering Adversarial Attacks with Multiple Encrypted Patch Embeddings
Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 2023
AprilPyone Maungmaung
Isao Echizen
Hitoshi Kiya
AAML
189
2
0
04 Sep 2023
Towards Certified Probabilistic Robustness with High Accuracy
Ruihan Zhang
Peixin Zhang
Jun Sun
AAML
221
2
0
02 Sep 2023
Non-Asymptotic Bounds for Adversarial Excess Risk under Misspecified Models
Changyu Liu
Yuling Jiao
Junhui Wang
Jian Huang
AAML
197
2
0
02 Sep 2023
Baseline Defenses for Adversarial Attacks Against Aligned Language Models
Neel Jain
Avi Schwarzschild
Yuxin Wen
Gowthami Somepalli
John Kirchenbauer
Ping Yeh-Chiang
Micah Goldblum
Aniruddha Saha
Jonas Geiping
Tom Goldstein
AAML
552
584
0
01 Sep 2023
Image Hijacks: Adversarial Images can Control Generative Models at Runtime
International Conference on Machine Learning (ICML), 2023
Luke Bailey
Euan Ong
Stuart J. Russell
Scott Emmons
VLM
MLLM
379
133
0
01 Sep 2023
Intriguing Properties of Diffusion Models: An Empirical Study of the Natural Attack Capability in Text-to-Image Generative Models
Computer Vision and Pattern Recognition (CVPR), 2023
Takami Sato
Justin Yue
Nanze Chen
Ningfei Wang
Qi Alfred Chen
DiffM
226
7
0
30 Aug 2023
Classification robustness to common optical aberrations
Patrick Müller
Alexander Braun
Margret Keuper
134
13
0
29 Aug 2023
Advancing Adversarial Robustness Through Adversarial Logit Update
Hao Xuan
Peican Zhu
Xingyu Li
AAML
275
0
0
29 Aug 2023
DiffSmooth: Certifiably Robust Learning via Diffusion Models and Local Smoothing
USENIX Security Symposium (USENIX Security), 2023
Jiawei Zhang
Zhongzhu Chen
Huan Zhang
Chaowei Xiao
Yue Liu
DiffM
224
32
0
28 Aug 2023
On-Manifold Projected Gradient Descent
Aaron Mahler
Tyrus Berry
Thomas Stephens
Harbir Antil
Michael Merritt
Jeanie Schreiber
Ioannis G. Kevrekidis
AAML
215
0
0
23 Aug 2023
Robustness Analysis of Continuous-Depth Models with Lagrangian Techniques
Sophie A. Neubauer
Radu Grosu
190
0
0
23 Aug 2023
HoSNN: Adversarially-Robust Homeostatic Spiking Neural Networks with Adaptive Firing Thresholds
Hejia Geng
Peng Li
AAML
394
4
0
20 Aug 2023
Robust Mixture-of-Expert Training for Convolutional Neural Networks
IEEE International Conference on Computer Vision (ICCV), 2023
Yihua Zhang
Ruisi Cai
Tianlong Chen
Guanhua Zhang
Huan Zhang
Pin-Yu Chen
Shiyu Chang
Zinan Lin
Sijia Liu
MoE
AAML
OOD
181
35
0
19 Aug 2023
General Lipschitz: Certified Robustness Against Resolvable Semantic Transformations via Transformation-Dependent Randomized Smoothing
European Conference on Artificial Intelligence (ECAI), 2023
Dmitrii Korzh
Alireza Azadbakht
Maryam Tahmasbi
Alireza Javaheri
AAML
218
0
0
17 Aug 2023
Symmetry Defense Against XGBoost Adversarial Perturbation Attacks
Blerta Lindqvist
AAML
160
0
0
10 Aug 2023
Pelta: Shielding Transformers to Mitigate Evasion Attacks in Federated Learning
Simon Queyrut
Yérom-David Bromberg
V. Schiavoni
FedML
AAML
174
1
0
08 Aug 2023
A reading survey on adversarial machine learning: Adversarial attacks and their understanding
Shashank Kotyan
AAML
169
11
0
07 Aug 2023
FROD: Robust Object Detection for Free
Muhammad Awais
Awais
Weiming Zhuang
Zhuang
Lingjuan
Lingjuan Lyu
Sung-Ho
Sung-Ho Bae
ObjD
185
2
0
03 Aug 2023
Previous
1
2
3
...
6
7
8
...
38
39
40
Next
Page 7 of 40
Page
of 40
Go