Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.04434
Cited By
signSGD: Compressed Optimisation for Non-Convex Problems
13 February 2018
Jeremy Bernstein
Yu-Xiang Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"signSGD: Compressed Optimisation for Non-Convex Problems"
50 / 157 papers shown
Title
CEDAS: A Compressed Decentralized Stochastic Gradient Method with Improved Convergence
Kun-Yen Huang
Shin-Yi Pu
30
9
0
14 Jan 2023
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
31
87
0
13 Jan 2023
Does compressing activations help model parallel training?
S. Bian
Dacheng Li
Hongyi Wang
Eric P. Xing
Shivaram Venkataraman
19
4
0
06 Jan 2023
Efficient On-device Training via Gradient Filtering
Yuedong Yang
Guihong Li
R. Marculescu
31
18
0
01 Jan 2023
Federated Learning with Flexible Control
Shiqiang Wang
Jake B. Perazzone
Mingyue Ji
Kevin S. Chan
FedML
28
17
0
16 Dec 2022
Refiner: Data Refining against Gradient Leakage Attacks in Federated Learning
Mingyuan Fan
Cen Chen
Chengyu Wang
Ximeng Liu
Wenmeng Zhou
Jun Huang
AAML
FedML
32
0
0
05 Dec 2022
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
14
6
0
31 Oct 2022
An Empirical Evaluation of Zeroth-Order Optimization Methods on AI-driven Molecule Optimization
Elvin Lo
Pin-Yu Chen
24
0
0
27 Oct 2022
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
Zhishuai Guo
R. L. Jin
Jiebo Luo
Tianbao Yang
FedML
45
8
0
26 Oct 2022
Over-the-Air Computation over Balanced Numerals
Alphan Șahin
Rui Yang
23
9
0
22 Sep 2022
Joint Privacy Enhancement and Quantization in Federated Learning
Natalie Lang
Elad Sofer
Tomer Shaked
Nir Shlezinger
FedML
27
46
0
23 Aug 2022
MUDGUARD: Taming Malicious Majorities in Federated Learning using Privacy-Preserving Byzantine-Robust Clustering
Rui Wang
Xingkai Wang
H. Chen
Jérémie Decouchant
S. Picek
Z. Liu
K. Liang
29
1
0
22 Aug 2022
Practical Vertical Federated Learning with Unsupervised Representation Learning
Zhaomin Wu
Q. Li
Bingsheng He
FedML
30
36
0
13 Aug 2022
Towards Efficient Communications in Federated Learning: A Contemporary Survey
Zihao Zhao
Yuzhu Mao
Yang Liu
Linqi Song
Ouyang Ye
Xinlei Chen
Wenbo Ding
FedML
49
59
0
02 Aug 2022
Fundamental Limits of Communication Efficiency for Model Aggregation in Distributed Learning: A Rate-Distortion Approach
Naifu Zhang
M. Tao
Jia Wang
Fan Xu
11
13
0
28 Jun 2022
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale
Gaoyuan Zhang
Songtao Lu
Yihua Zhang
Xiangyi Chen
Pin-Yu Chen
Quanfu Fan
Lee Martie
L. Horesh
Min-Fong Hong
Sijia Liu
OOD
22
12
0
13 Jun 2022
Gradient Obfuscation Gives a False Sense of Security in Federated Learning
Kai Yue
Richeng Jin
Chau-Wai Wong
D. Baron
H. Dai
FedML
26
46
0
08 Jun 2022
Communication-Efficient Distributionally Robust Decentralized Learning
Matteo Zecchin
Marios Kountouris
David Gesbert
18
9
0
31 May 2022
Efficient-Adam: Communication-Efficient Distributed Adam
Congliang Chen
Li Shen
Wei Liu
Z. Luo
23
19
0
28 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
16
10
0
08 May 2022
Communication-Efficient Adaptive Federated Learning
Yujia Wang
Lu Lin
Jinghui Chen
FedML
19
69
0
05 May 2022
Enabling All In-Edge Deep Learning: A Literature Review
Praveen Joshi
Mohammed Hasanuzzaman
Chandra Thapa
Haithem Afli
T. Scully
21
22
0
07 Apr 2022
Nonlinear gradient mappings and stochastic optimization: A general framework with applications to heavy-tail noise
D. Jakovetić
Dragana Bajović
Anit Kumar Sahu
S. Kar
Nemanja Milošević
Dusan Stamenkovic
17
12
0
06 Apr 2022
FedSynth: Gradient Compression via Synthetic Data in Federated Learning
Shengyuan Hu
Jack Goetz
Kshitiz Malik
Hongyuan Zhan
Zhe Liu
Yue Liu
DD
FedML
24
38
0
04 Apr 2022
Over-the-Air Federated Learning via Second-Order Optimization
Peng Yang
Yuning Jiang
Ting Wang
Yong Zhou
Yuanming Shi
Colin N. Jones
40
28
0
29 Mar 2022
Maximizing Communication Efficiency for Large-scale Training via 0/1 Adam
Yucheng Lu
Conglong Li
Minjia Zhang
Christopher De Sa
Yuxiong He
OffRL
AI4CE
22
20
0
12 Feb 2022
SignSGD: Fault-Tolerance to Blind and Byzantine Adversaries
J. Akoun
S. Meyer
AAML
FedML
14
1
0
04 Feb 2022
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
24
4
0
29 Jan 2022
Stability Based Generalization Bounds for Exponential Family Langevin Dynamics
A. Banerjee
Tiancong Chen
Xinyan Li
Yingxue Zhou
15
8
0
09 Jan 2022
Accurate Neural Training with 4-bit Matrix Multiplications at Standard Formats
Brian Chmiel
Ron Banner
Elad Hoffer
Hilla Ben Yaacov
Daniel Soudry
MQ
25
22
0
19 Dec 2021
Federated Two-stage Learning with Sign-based Voting
Zichen Ma
Zihan Lu
Yu Lu
Wenye Li
Jinfeng Yi
Shuguang Cui
FedML
28
2
0
10 Dec 2021
Improving Differentially Private SGD via Randomly Sparsified Gradients
Junyi Zhu
Matthew B. Blaschko
21
5
0
01 Dec 2021
Communication-Efficient Federated Learning via Quantized Compressed Sensing
Yong-Nam Oh
Namyoon Lee
Yo-Seb Jeon
H. Vincent Poor
FedML
MQ
22
34
0
30 Nov 2021
Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications
Khaled B. Letaief
Yuanming Shi
Jianmin Lu
Jianhua Lu
32
416
0
24 Nov 2021
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
22
14
0
01 Nov 2021
BEV-SGD: Best Effort Voting SGD for Analog Aggregation Based Federated Learning against Byzantine Attackers
Xin-Yue Fan
Yue Wang
Yan Huo
Zhi Tian
FedML
17
23
0
18 Oct 2021
ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training
Hui-Po Wang
Sebastian U. Stich
Yang He
Mario Fritz
FedML
AI4CE
28
46
0
11 Oct 2021
Federated Learning via Plurality Vote
Kai Yue
Richeng Jin
Chau-Wai Wong
H. Dai
FedML
21
8
0
06 Oct 2021
Bayesian AirComp with Sign-Alignment Precoding for Wireless Federated Learning
Chanhoo Park
Seunghoon Lee
Namyoon Lee
29
5
0
14 Sep 2021
Fundamental limits of over-the-air optimization: Are analog schemes optimal?
Shubham K. Jha
Prathamesh Mayekar
Himanshu Tyagi
22
7
0
11 Sep 2021
Understanding the Generalization of Adam in Learning Neural Networks with Proper Regularization
Difan Zou
Yuan Cao
Yuanzhi Li
Quanquan Gu
MLT
AI4CE
39
37
0
25 Aug 2021
A Hard Label Black-box Adversarial Attack Against Graph Neural Networks
Jiaming Mu
Binghui Wang
Qi Li
Kun Sun
Mingwei Xu
Zhuotao Liu
AAML
15
33
0
21 Aug 2021
Decentralized Composite Optimization with Compression
Yao Li
Xiaorui Liu
Jiliang Tang
Ming Yan
Kun Yuan
19
9
0
10 Aug 2021
Evaluating Federated Learning for Intrusion Detection in Internet of Things: Review and Challenges
Enrique Mármol Campos
Pablo Fernández Saura
Aurora González-Vidal
José Luis Hernández Ramos
Jorge Bernal Bernabé
G. Baldini
A. Gómez-Skarmeta
31
149
0
02 Aug 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
173
411
0
14 Jul 2021
BAGUA: Scaling up Distributed Learning with System Relaxations
Shaoduo Gan
Xiangru Lian
Rui Wang
Jianbin Chang
Chengjun Liu
...
Jiawei Jiang
Binhang Yuan
Sen Yang
Ji Liu
Ce Zhang
23
30
0
03 Jul 2021
LNS-Madam: Low-Precision Training in Logarithmic Number System using Multiplicative Weight Update
Jiawei Zhao
Steve Dai
Rangharajan Venkatesan
Brian Zimmer
Mustafa Ali
Ming-Yu Liu
Brucek Khailany
B. Dally
Anima Anandkumar
MQ
23
13
0
26 Jun 2021
DP-SIGNSGD: When Efficiency Meets Privacy and Robustness
Lingjuan Lyu
FedML
AAML
14
19
0
11 May 2021
Slashing Communication Traffic in Federated Learning by Transmitting Clustered Model Updates
Laizhong Cui
Xiaoxin Su
Yipeng Zhou
Yi Pan
FedML
22
35
0
10 May 2021
Distributed Learning in Wireless Networks: Recent Progress and Future Challenges
Mingzhe Chen
Deniz Gündüz
Kaibin Huang
Walid Saad
M. Bennis
Aneta Vulgarakis Feljan
H. Vincent Poor
21
401
0
05 Apr 2021
Previous
1
2
3
4
Next