ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.04434
  4. Cited By
signSGD: Compressed Optimisation for Non-Convex Problems

signSGD: Compressed Optimisation for Non-Convex Problems

13 February 2018
Jeremy Bernstein
Yu-Xiang Wang
Kamyar Azizzadenesheli
Anima Anandkumar
    FedML
    ODL
ArXivPDFHTML

Papers citing "signSGD: Compressed Optimisation for Non-Convex Problems"

8 / 158 papers shown
Title
99% of Distributed Optimization is a Waste of Time: The Issue and How to
  Fix it
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
11
13
0
27 Jan 2019
A Distributed Synchronous SGD Algorithm with Global Top-$k$
  Sparsification for Low Bandwidth Networks
A Distributed Synchronous SGD Algorithm with Global Top-kkk Sparsification for Low Bandwidth Networks
S. Shi
Qiang-qiang Wang
Kaiyong Zhao
Zhenheng Tang
Yuxin Wang
Xiang Huang
Xiaowen Chu
32
134
0
14 Jan 2019
A Sufficient Condition for Convergences of Adam and RMSProp
A Sufficient Condition for Convergences of Adam and RMSProp
Fangyu Zou
Li Shen
Zequn Jie
Weizhong Zhang
Wei Liu
17
361
0
23 Nov 2018
Policy Gradient in Partially Observable Environments: Approximation and
  Convergence
Policy Gradient in Partially Observable Environments: Approximation and Convergence
Kamyar Azizzadenesheli
Manish Kumar Bera
Anima Anandkumar
OffRL
20
8
0
18 Oct 2018
signSGD with Majority Vote is Communication Efficient And Fault Tolerant
signSGD with Majority Vote is Communication Efficient And Fault Tolerant
Jeremy Bernstein
Jiawei Zhao
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
6
46
0
11 Oct 2018
Don't Use Large Mini-Batches, Use Local SGD
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
25
429
0
22 Aug 2018
Sparse Binary Compression: Towards Distributed Deep Learning with
  minimal Communication
Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
11
210
0
22 May 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
130
1,198
0
16 Aug 2016
Previous
1234