Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.04742
Cited By
Quantifying Uncertainty in Discrete-Continuous and Skewed Data with Bayesian Deep Learning
13 February 2018
T. Vandal
E. Kodra
Jennifer Dy
S. Ganguly
R. Nemani
A. Ganguly
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Quantifying Uncertainty in Discrete-Continuous and Skewed Data with Bayesian Deep Learning"
5 / 5 papers shown
Title
Towards Learning in Grey Spatiotemporal Systems: A Prophet to Non-consecutive Spatiotemporal Dynamics
Zhengyang Zhou
Yang Kuo
Wei Sun
Binwu Wang
Mingxing Zhou
Yunan Zong
Yang Wang
AI4TS
24
3
0
17 Aug 2022
Practical Conditional Neural Processes Via Tractable Dependent Predictions
Stratis Markou
James Requeima
W. Bruinsma
Anna Vaughan
Richard E. Turner
UQCV
AI4CE
20
24
0
16 Mar 2022
Bridging observation, theory and numerical simulation of the ocean using Machine Learning
Maike Sonnewald
Redouane Lguensat
Daniel C. Jones
P. Dueben
J. Brajard
Venkatramani Balaji
AI4Cl
AI4CE
38
100
0
26 Apr 2021
Accurate Uncertainty Estimation and Decomposition in Ensemble Learning
J. Liu
John Paisley
M. Kioumourtzoglou
B. Coull
UQCV
UD
PER
17
83
0
11 Nov 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
261
9,136
0
06 Jun 2015
1