ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.04876
  4. Cited By
HiGrad: Uncertainty Quantification for Online Learning and Stochastic Approximation
v1v2v3 (latest)

HiGrad: Uncertainty Quantification for Online Learning and Stochastic Approximation

13 February 2018
Weijie J. Su
Yuancheng Zhu
ArXiv (abs)PDFHTML

Papers citing "HiGrad: Uncertainty Quantification for Online Learning and Stochastic Approximation"

15 / 15 papers shown
Title
Statistical Inference with Stochastic Gradient Methods under
  $φ$-mixing Data
Statistical Inference with Stochastic Gradient Methods under φφφ-mixing Data
Ruiqi Liu
Xinyu Chen
Zuofeng Shang
FedML
84
6
0
24 Feb 2023
Semiparametric Regression for Spatial Data via Deep Learning
Semiparametric Regression for Spatial Data via Deep Learning
Kexuan Li
Jun Zhu
A. Ives
V. Radeloff
Fangfang Wang
81
9
0
10 Jan 2023
Online Statistical Inference for Contextual Bandits via Stochastic
  Gradient Descent
Online Statistical Inference for Contextual Bandits via Stochastic Gradient Descent
Xinyu Chen
Zehua Lai
He Li
Yichen Zhang
80
4
0
30 Dec 2022
Scalable Uncertainty Quantification for Deep Operator Networks using
  Randomized Priors
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDLUQCV
88
42
0
06 Mar 2022
Bootstrapping the error of Oja's algorithm
Bootstrapping the error of Oja's algorithm
Robert Lunde
Purnamrita Sarkar
Rachel A. Ward
100
11
0
28 Jun 2021
Fast and Robust Online Inference with Stochastic Gradient Descent via
  Random Scaling
Fast and Robust Online Inference with Stochastic Gradient Descent via Random Scaling
S. Lee
Yuan Liao
M. Seo
Youngki Shin
89
32
0
06 Jun 2021
Online Statistical Inference for Parameters Estimation with
  Linear-Equality Constraints
Online Statistical Inference for Parameters Estimation with Linear-Equality Constraints
Ruiqi Liu
Mingao Yuan
Zuofeng Shang
55
6
0
21 May 2021
Online Statistical Inference for Stochastic Optimization via
  Kiefer-Wolfowitz Methods
Online Statistical Inference for Stochastic Optimization via Kiefer-Wolfowitz Methods
Xi Chen
Zehua Lai
He Li
Yichen Zhang
102
16
0
05 Feb 2021
Understanding and Detecting Convergence for Stochastic Gradient Descent
  with Momentum
Understanding and Detecting Convergence for Stochastic Gradient Descent with Momentum
Jerry Chee
Ping Li
43
12
0
27 Aug 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime:
  Asymptotic Normality and Bias
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
106
52
0
14 Jun 2020
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
  Non-Asymptotic Concentration
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration
Wenlong Mou
C. J. Li
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
85
76
0
09 Apr 2020
Online Covariance Matrix Estimation in Stochastic Gradient Descent
Online Covariance Matrix Estimation in Stochastic Gradient Descent
Wanrong Zhu
Xi Chen
Wei Biao Wu
133
57
0
10 Feb 2020
A generalization of regularized dual averaging and its dynamics
A generalization of regularized dual averaging and its dynamics
Shih-Kang Chao
Guang Cheng
60
18
0
22 Sep 2019
Approximate Newton-based statistical inference using only stochastic
  gradients
Approximate Newton-based statistical inference using only stochastic gradients
Tianyang Li
Anastasios Kyrillidis
Liu Liu
Constantine Caramanis
65
6
0
23 May 2018
Bridging the Gap between Constant Step Size Stochastic Gradient Descent
  and Markov Chains
Bridging the Gap between Constant Step Size Stochastic Gradient Descent and Markov Chains
Aymeric Dieuleveut
Alain Durmus
Francis R. Bach
108
156
0
20 Jul 2017
1