Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.04876
Cited By
v1
v2
v3 (latest)
HiGrad: Uncertainty Quantification for Online Learning and Stochastic Approximation
13 February 2018
Weijie J. Su
Yuancheng Zhu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"HiGrad: Uncertainty Quantification for Online Learning and Stochastic Approximation"
15 / 15 papers shown
Title
Statistical Inference with Stochastic Gradient Methods under
φ
φ
φ
-mixing Data
Ruiqi Liu
Xinyu Chen
Zuofeng Shang
FedML
84
6
0
24 Feb 2023
Semiparametric Regression for Spatial Data via Deep Learning
Kexuan Li
Jun Zhu
A. Ives
V. Radeloff
Fangfang Wang
81
9
0
10 Jan 2023
Online Statistical Inference for Contextual Bandits via Stochastic Gradient Descent
Xinyu Chen
Zehua Lai
He Li
Yichen Zhang
80
4
0
30 Dec 2022
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDL
UQCV
88
42
0
06 Mar 2022
Bootstrapping the error of Oja's algorithm
Robert Lunde
Purnamrita Sarkar
Rachel A. Ward
100
11
0
28 Jun 2021
Fast and Robust Online Inference with Stochastic Gradient Descent via Random Scaling
S. Lee
Yuan Liao
M. Seo
Youngki Shin
92
32
0
06 Jun 2021
Online Statistical Inference for Parameters Estimation with Linear-Equality Constraints
Ruiqi Liu
Mingao Yuan
Zuofeng Shang
60
6
0
21 May 2021
Online Statistical Inference for Stochastic Optimization via Kiefer-Wolfowitz Methods
Xi Chen
Zehua Lai
He Li
Yichen Zhang
102
16
0
05 Feb 2021
Understanding and Detecting Convergence for Stochastic Gradient Descent with Momentum
Jerry Chee
Ping Li
43
12
0
27 Aug 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
106
52
0
14 Jun 2020
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration
Wenlong Mou
C. J. Li
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
85
76
0
09 Apr 2020
Online Covariance Matrix Estimation in Stochastic Gradient Descent
Wanrong Zhu
Xi Chen
Wei Biao Wu
133
57
0
10 Feb 2020
A generalization of regularized dual averaging and its dynamics
Shih-Kang Chao
Guang Cheng
60
18
0
22 Sep 2019
Approximate Newton-based statistical inference using only stochastic gradients
Tianyang Li
Anastasios Kyrillidis
Liu Liu
Constantine Caramanis
65
6
0
23 May 2018
Bridging the Gap between Constant Step Size Stochastic Gradient Descent and Markov Chains
Aymeric Dieuleveut
Alain Durmus
Francis R. Bach
108
156
0
20 Jul 2017
1