ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.05098
  4. Cited By
DiCE: The Infinitely Differentiable Monte-Carlo Estimator
v1v2v3 (latest)

DiCE: The Infinitely Differentiable Monte-Carlo Estimator

14 February 2018
Jakob N. Foerster
Gregory Farquhar
Maruan Al-Shedivat
Tim Rocktaschel
Eric Xing
Shimon Whiteson
ArXiv (abs)PDFHTMLGithub (148★)

Papers citing "DiCE: The Infinitely Differentiable Monte-Carlo Estimator"

16 / 66 papers shown
Title
On the Convergence Theory of Debiased Model-Agnostic Meta-Reinforcement
  Learning
On the Convergence Theory of Debiased Model-Agnostic Meta-Reinforcement Learning
Alireza Fallah
Kristian Georgiev
Aryan Mokhtari
Asuman Ozdaglar
136
23
0
12 Feb 2020
Automatic Differentiable Monte Carlo: Theory and Application
Automatic Differentiable Monte Carlo: Theory and Application
Shi-Xin Zhang
Z. Wan
H. Yao
52
17
0
20 Nov 2019
MAME : Model-Agnostic Meta-Exploration
MAME : Model-Agnostic Meta-Exploration
Swaminathan Gurumurthy
Sumit Kumar
Katia Sycara
84
15
0
11 Nov 2019
When MAML Can Adapt Fast and How to Assist When It Cannot
When MAML Can Adapt Fast and How to Assist When It Cannot
Sébastien M. R. Arnold
Shariq Iqbal
Fei Sha
39
5
0
30 Oct 2019
Prior Specification for Bayesian Matrix Factorization via Prior
  Predictive Matching
Prior Specification for Bayesian Matrix Factorization via Prior Predictive Matching
Eliezer de Souza da Silva
Tomasz Kuśmierczyk
M. Hartmann
Arto Klami
42
2
0
27 Oct 2019
Functional Tensors for Probabilistic Programming
Functional Tensors for Probabilistic Programming
F. Obermeyer
Eli Bingham
M. Jankowiak
Du Phan
Jonathan P. Chen
55
18
0
23 Oct 2019
Distilling Importance Sampling for Likelihood Free Inference
Distilling Importance Sampling for Likelihood Free Inference
D. Prangle
Cecilia Viscardi
91
3
0
08 Oct 2019
ES-MAML: Simple Hessian-Free Meta Learning
ES-MAML: Simple Hessian-Free Meta Learning
Xingyou Song
Wenbo Gao
Yuxiang Yang
K. Choromanski
Aldo Pacchiano
Yunhao Tang
154
118
0
25 Sep 2019
Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function
  Estimators for Reinforcement Learning
Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function Estimators for Reinforcement Learning
Gregory Farquhar
Shimon Whiteson
Jakob N. Foerster
75
17
0
23 Sep 2019
Probabilistic Models with Deep Neural Networks
Probabilistic Models with Deep Neural Networks
A. Masegosa
Rafael Cabañas
H. Langseth
Thomas D. Nielsen
Antonio Salmerón
BDL
57
12
0
09 Aug 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
94
416
0
25 Jun 2019
New Tricks for Estimating Gradients of Expectations
New Tricks for Estimating Gradients of Expectations
Christian J. Walder
Paul Roussel
Richard Nock
Cheng Soon Ong
Masashi Sugiyama
33
4
0
31 Jan 2019
Stable Opponent Shaping in Differentiable Games
Stable Opponent Shaping in Differentiable Games
Alistair Letcher
Jakob N. Foerster
David Balduzzi
Tim Rocktaschel
Shimon Whiteson
142
110
0
20 Nov 2018
VIREL: A Variational Inference Framework for Reinforcement Learning
VIREL: A Variational Inference Framework for Reinforcement Learning
M. Fellows
Anuj Mahajan
Tim G. J. Rudner
Shimon Whiteson
DRL
106
56
0
03 Nov 2018
ProMP: Proximal Meta-Policy Search
ProMP: Proximal Meta-Policy Search
Jonas Rothfuss
Dennis Lee
I. Clavera
Tamim Asfour
Pieter Abbeel
85
211
0
16 Oct 2018
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive
  Environments
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments
Maruan Al-Shedivat
Trapit Bansal
Yuri Burda
Ilya Sutskever
Igor Mordatch
Pieter Abbeel
CLL
79
354
0
10 Oct 2017
Previous
12