ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.06132
  4. Cited By
Interaction Matters: A Note on Non-asymptotic Local Convergence of
  Generative Adversarial Networks

Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks

16 February 2018
Tengyuan Liang
J. Stokes
ArXivPDFHTML

Papers citing "Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks"

50 / 114 papers shown
Title
Fast Policy Extragradient Methods for Competitive Games with Entropy
  Regularization
Fast Policy Extragradient Methods for Competitive Games with Entropy Regularization
Shicong Cen
Yuting Wei
Yuejie Chi
24
77
0
31 May 2021
Saddle Point Optimization with Approximate Minimization Oracle and its
  Application to Robust Berthing Control
Saddle Point Optimization with Approximate Minimization Oracle and its Application to Robust Berthing Control
Youhei Akimoto
Yoshiki Miyauchi
A. Maki
11
16
0
25 May 2021
Fast Distributionally Robust Learning with Variance Reduced Min-Max
  Optimization
Fast Distributionally Robust Learning with Variance Reduced Min-Max Optimization
Yaodong Yu
Tianyi Lin
Eric Mazumdar
Michael I. Jordan
OOD
22
22
0
27 Apr 2021
Adaptive Learning in Continuous Games: Optimal Regret Bounds and
  Convergence to Nash Equilibrium
Adaptive Learning in Continuous Games: Optimal Regret Bounds and Convergence to Nash Equilibrium
Yu-Guan Hsieh
Kimon Antonakopoulos
P. Mertikopoulos
11
73
0
26 Apr 2021
Saddle Point Optimization with Approximate Minimization Oracle
Saddle Point Optimization with Approximate Minimization Oracle
Youhei Akimoto
6
7
0
29 Mar 2021
On the Initialization for Convex-Concave Min-max Problems
On the Initialization for Convex-Concave Min-max Problems
Mingrui Liu
Francesco Orabona
ODL
19
4
0
27 Feb 2021
Cyclic Coordinate Dual Averaging with Extrapolation
Cyclic Coordinate Dual Averaging with Extrapolation
Chaobing Song
Jelena Diakonikolas
27
6
0
26 Feb 2021
Local Stochastic Gradient Descent Ascent: Convergence Analysis and
  Communication Efficiency
Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency
Yuyang Deng
M. Mahdavi
19
58
0
25 Feb 2021
Distributionally Robust Federated Averaging
Distributionally Robust Federated Averaging
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
6
140
0
25 Feb 2021
Direct-Search for a Class of Stochastic Min-Max Problems
Direct-Search for a Class of Stochastic Min-Max Problems
Sotiris Anagnostidis
Aurélien Lucchi
Youssef Diouane
15
11
0
22 Feb 2021
Follow-the-Regularized-Leader Routes to Chaos in Routing Games
Follow-the-Regularized-Leader Routes to Chaos in Routing Games
J. Bielawski
Thiparat Chotibut
Fryderyk Falniowski
Grzegorz Kosiorowski
M. Misiurewicz
Georgios Piliouras
AI4CE
14
26
0
16 Feb 2021
Local and Global Uniform Convexity Conditions
Local and Global Uniform Convexity Conditions
Thomas Kerdreux
Alexandre d’Aspremont
S. Pokutta
10
12
0
09 Feb 2021
Last-iterate Convergence of Decentralized Optimistic Gradient
  Descent/Ascent in Infinite-horizon Competitive Markov Games
Last-iterate Convergence of Decentralized Optimistic Gradient Descent/Ascent in Infinite-horizon Competitive Markov Games
Chen-Yu Wei
Chung-Wei Lee
Mengxiao Zhang
Haipeng Luo
11
82
0
08 Feb 2021
Functional Space Analysis of Local GAN Convergence
Functional Space Analysis of Local GAN Convergence
Valentin Khrulkov
Artem Babenko
Ivan V. Oseledets
26
6
0
08 Feb 2021
Independent Policy Gradient Methods for Competitive Reinforcement
  Learning
Independent Policy Gradient Methods for Competitive Reinforcement Learning
C. Daskalakis
Dylan J. Foster
Noah Golowich
62
158
0
11 Jan 2021
On the Impossibility of Convergence of Mixed Strategies with No Regret
  Learning
On the Impossibility of Convergence of Mixed Strategies with No Regret Learning
Vidya Muthukumar
Soham R. Phade
A. Sahai
16
1
0
03 Dec 2020
Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
  Optimization
Efficient Methods for Structured Nonconvex-Nonconcave Min-Max Optimization
Jelena Diakonikolas
C. Daskalakis
Michael I. Jordan
10
142
0
31 Oct 2020
Tight last-iterate convergence rates for no-regret learning in
  multi-player games
Tight last-iterate convergence rates for no-regret learning in multi-player games
Noah Golowich
S. Pattathil
C. Daskalakis
46
80
0
26 Oct 2020
Train simultaneously, generalize better: Stability of gradient-based
  minimax learners
Train simultaneously, generalize better: Stability of gradient-based minimax learners
Farzan Farnia
Asuman Ozdaglar
15
47
0
23 Oct 2020
Limiting Behaviors of Nonconvex-Nonconcave Minimax Optimization via
  Continuous-Time Systems
Limiting Behaviors of Nonconvex-Nonconcave Minimax Optimization via Continuous-Time Systems
Benjamin Grimmer
Haihao Lu
Pratik Worah
Vahab Mirrokni
26
7
0
20 Oct 2020
Statistical guarantees for generative models without domination
Statistical guarantees for generative models without domination
Nicolas Schreuder
Victor-Emmanuel Brunel
A. Dalalyan
GAN
59
34
0
19 Oct 2020
A method for escaping limit cycles in training GANs
A method for escaping limit cycles in training GANs
Li Keke
Xinmin Yang
30
0
0
07 Oct 2020
The Complexity of Constrained Min-Max Optimization
The Complexity of Constrained Min-Max Optimization
C. Daskalakis
Stratis Skoulakis
Manolis Zampetakis
12
136
0
21 Sep 2020
Primal-Dual Sequential Subspace Optimization for Saddle-point Problems
Primal-Dual Sequential Subspace Optimization for Saddle-point Problems
Yoni Choukroun
M. Zibulevsky
P. Kisilev
7
5
0
20 Aug 2020
Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
  Sample Complexity
Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal Sample Complexity
K. Zhang
Sham Kakade
Tamer Bacsar
Lin F. Yang
39
119
0
15 Jul 2020
Exponential Convergence of Gradient Methods in Concave Network Zero-sum
  Games
Exponential Convergence of Gradient Methods in Concave Network Zero-sum Games
Amit Kadan
Hu Fu
14
6
0
10 Jul 2020
A Convergent and Dimension-Independent Min-Max Optimization Algorithm
A Convergent and Dimension-Independent Min-Max Optimization Algorithm
Vijay Keswani
Oren Mangoubi
Sushant Sachdeva
Nisheeth K. Vishnoi
13
1
0
22 Jun 2020
Online Kernel based Generative Adversarial Networks
Online Kernel based Generative Adversarial Networks
Yeojoon Youn
Neil Thistlethwaite
Sang Keun Choe
Jacob D. Abernethy
GAN
11
2
0
19 Jun 2020
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Chen-Yu Wei
Chung-Wei Lee
Mengxiao Zhang
Haipeng Luo
8
11
0
16 Jun 2020
The limits of min-max optimization algorithms: convergence to spurious
  non-critical sets
The limits of min-max optimization algorithms: convergence to spurious non-critical sets
Ya-Ping Hsieh
P. Mertikopoulos
V. Cevher
27
81
0
16 Jun 2020
Explore Aggressively, Update Conservatively: Stochastic Extragradient
  Methods with Variable Stepsize Scaling
Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling
Yu-Guan Hsieh
F. Iutzeler
J. Malick
P. Mertikopoulos
15
67
0
23 Mar 2020
Making Method of Moments Great Again? -- How can GANs learn
  distributions
Making Method of Moments Great Again? -- How can GANs learn distributions
Yuanzhi Li
Zehao Dou
GAN
6
5
0
09 Mar 2020
Last iterate convergence in no-regret learning: constrained min-max
  optimization for convex-concave landscapes
Last iterate convergence in no-regret learning: constrained min-max optimization for convex-concave landscapes
Qi Lei
Sai Ganesh Nagarajan
Ioannis Panageas
Xiao Wang
6
43
0
17 Feb 2020
An Optimal Multistage Stochastic Gradient Method for Minimax Problems
An Optimal Multistage Stochastic Gradient Method for Minimax Problems
Alireza Fallah
Asuman Ozdaglar
S. Pattathil
9
36
0
13 Feb 2020
Near-Optimal Algorithms for Minimax Optimization
Near-Optimal Algorithms for Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
18
250
0
05 Feb 2020
Last Iterate is Slower than Averaged Iterate in Smooth Convex-Concave
  Saddle Point Problems
Last Iterate is Slower than Averaged Iterate in Smooth Convex-Concave Saddle Point Problems
Noah Golowich
S. Pattathil
C. Daskalakis
Asuman Ozdaglar
6
102
0
31 Jan 2020
An $O(s^r)$-Resolution ODE Framework for Understanding Discrete-Time
  Algorithms and Applications to the Linear Convergence of Minimax Problems
An O(sr)O(s^r)O(sr)-Resolution ODE Framework for Understanding Discrete-Time Algorithms and Applications to the Linear Convergence of Minimax Problems
Haihao Lu
12
6
0
23 Jan 2020
Accelerating Smooth Games by Manipulating Spectral Shapes
Accelerating Smooth Games by Manipulating Spectral Shapes
Waïss Azizian
Damien Scieur
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
33
48
0
02 Jan 2020
Estimating Certain Integral Probability Metric (IPM) is as Hard as
  Estimating under the IPM
Estimating Certain Integral Probability Metric (IPM) is as Hard as Estimating under the IPM
Tengyuan Liang
13
14
0
02 Nov 2019
A Decentralized Proximal Point-type Method for Saddle Point Problems
A Decentralized Proximal Point-type Method for Saddle Point Problems
Weijie Liu
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
Zebang Shen
Nenggan Zheng
57
30
0
31 Oct 2019
SGD Learns One-Layer Networks in WGANs
SGD Learns One-Layer Networks in WGANs
Qi Lei
J. Lee
A. Dimakis
C. Daskalakis
GAN
11
35
0
15 Oct 2019
Wasserstein-2 Generative Networks
Wasserstein-2 Generative Networks
Alexander Korotin
Vage Egiazarian
Arip Asadulaev
Alexander Safin
E. Burnaev
GAN
122
100
0
28 Sep 2019
Bridging Explicit and Implicit Deep Generative Models via Neural Stein
  Estimators
Bridging Explicit and Implicit Deep Generative Models via Neural Stein Estimators
Qitian Wu
Rui Gao
H. Zha
GAN
6
5
0
28 Sep 2019
On the convergence of single-call stochastic extra-gradient methods
On the convergence of single-call stochastic extra-gradient methods
Yu-Guan Hsieh
F. Iutzeler
J. Malick
P. Mertikopoulos
14
167
0
22 Aug 2019
Convergence of Gradient Methods on Bilinear Zero-Sum Games
Convergence of Gradient Methods on Bilinear Zero-Sum Games
Guojun Zhang
Yaoliang Yu
9
37
0
15 Aug 2019
A Tight and Unified Analysis of Gradient-Based Methods for a Whole
  Spectrum of Games
A Tight and Unified Analysis of Gradient-Based Methods for a Whole Spectrum of Games
Waïss Azizian
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
10
24
0
13 Jun 2019
Last-iterate convergence rates for min-max optimization
Last-iterate convergence rates for min-max optimization
Jacob D. Abernethy
Kevin A. Lai
Andre Wibisono
9
73
0
05 Jun 2019
Encoding Invariances in Deep Generative Models
Encoding Invariances in Deep Generative Models
Viraj Shah
Ameya Joshi
Sambuddha Ghosal
B. Pokuri
S. Sarkar
Baskar Ganapathysubramanian
C. Hegde
PINN
GAN
11
30
0
04 Jun 2019
Convergence Rate of $\mathcal{O}(1/k)$ for Optimistic Gradient and
  Extra-gradient Methods in Smooth Convex-Concave Saddle Point Problems
Convergence Rate of O(1/k)\mathcal{O}(1/k)O(1/k) for Optimistic Gradient and Extra-gradient Methods in Smooth Convex-Concave Saddle Point Problems
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
16
20
0
03 Jun 2019
On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems
On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems
Tianyi Lin
Chi Jin
Michael I. Jordan
11
498
0
02 Jun 2019
Previous
123
Next