ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.06132
  4. Cited By
Interaction Matters: A Note on Non-asymptotic Local Convergence of
  Generative Adversarial Networks

Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks

16 February 2018
Tengyuan Liang
J. Stokes
ArXivPDFHTML

Papers citing "Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks"

14 / 114 papers shown
Title
Competitive Gradient Descent
Competitive Gradient Descent
Florian Schäfer
Anima Anandkumar
11
102
0
28 May 2019
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring
  for Minimax Problems
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring for Minimax Problems
Ernest K. Ryu
Kun Yuan
W. Yin
11
36
0
26 May 2019
Training GANs with Centripetal Acceleration
Training GANs with Centripetal Acceleration
Wei Peng
Yuhong Dai
Hui Zhang
Lizhi Cheng
GAN
24
41
0
24 Feb 2019
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order
  Methods
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods
Maher Nouiehed
Maziar Sanjabi
Tianjian Huang
J. Lee
Meisam Razaviyayn
26
336
0
21 Feb 2019
Hybrid Block Successive Approximation for One-Sided Non-Convex Min-Max
  Problems: Algorithms and Applications
Hybrid Block Successive Approximation for One-Sided Non-Convex Min-Max Problems: Algorithms and Applications
Songtao Lu
Ioannis C. Tsaknakis
Mingyi Hong
Yongxin Chen
18
169
0
21 Feb 2019
Nonparametric Density Estimation & Convergence Rates for GANs under
  Besov IPM Losses
Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses
Ananya Uppal
Shashank Singh
Barnabás Póczós
27
52
0
09 Feb 2019
A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for
  Saddle Point Problems: Proximal Point Approach
A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle Point Problems: Proximal Point Approach
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
17
323
0
24 Jan 2019
How Well Generative Adversarial Networks Learn Distributions
How Well Generative Adversarial Networks Learn Distributions
Tengyuan Liang
GAN
11
94
0
07 Nov 2018
Finding Mixed Nash Equilibria of Generative Adversarial Networks
Finding Mixed Nash Equilibria of Generative Adversarial Networks
Ya-Ping Hsieh
Chen Liu
S. Chakrabartty
GAN
11
91
0
23 Oct 2018
Negative Momentum for Improved Game Dynamics
Negative Momentum for Improved Game Dynamics
Gauthier Gidel
Reyhane Askari Hemmat
Mohammad Pezeshki
Rémi Le Priol
Gabriel Huang
Simon Lacoste-Julien
Ioannis Mitliagkas
AI4CE
14
178
0
12 Jul 2018
Last-Iterate Convergence: Zero-Sum Games and Constrained Min-Max
  Optimization
Last-Iterate Convergence: Zero-Sum Games and Constrained Min-Max Optimization
C. Daskalakis
Ioannis Panageas
11
175
0
11 Jul 2018
Nonparametric Density Estimation under Adversarial Losses
Nonparametric Density Estimation under Adversarial Losses
Shashank Singh
Ananya Uppal
Boyue Li
Chun-Liang Li
Manzil Zaheer
Barnabás Póczós
GAN
12
55
0
22 May 2018
Local Saddle Point Optimization: A Curvature Exploitation Approach
Local Saddle Point Optimization: A Curvature Exploitation Approach
Leonard Adolphs
Hadi Daneshmand
Aurélien Lucchi
Thomas Hofmann
15
107
0
15 May 2018
Minimax Distribution Estimation in Wasserstein Distance
Minimax Distribution Estimation in Wasserstein Distance
Shashank Singh
Barnabás Póczós
19
0
0
24 Feb 2018
Previous
123