ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.06455
  4. Cited By
Bayesian Uncertainty Estimation for Batch Normalized Deep Networks

Bayesian Uncertainty Estimation for Batch Normalized Deep Networks

18 February 2018
Mattias Teye
Hossein Azizpour
Kevin Smith
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Bayesian Uncertainty Estimation for Batch Normalized Deep Networks"

29 / 29 papers shown
Title
Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Xueqiong Yuan
Jipeng Li
E. Kuruoglu
UQCV
BDL
40
0
0
21 Jan 2025
A Novel Characterization of the Population Area Under the Risk Coverage Curve (AURC) and Rates of Finite Sample Estimators
A Novel Characterization of the Population Area Under the Risk Coverage Curve (AURC) and Rates of Finite Sample Estimators
Han Zhou
Jordy Van Landeghem
Teodora Popordanoska
Matthew B. Blaschko
30
0
0
20 Oct 2024
Uncertainty Quantification for Image-based Traffic Prediction across
  Cities
Uncertainty Quantification for Image-based Traffic Prediction across Cities
Alexander Timans
Nina Wiedemann
Nishant Kumar
Ye Hong
Martin Raubal
16
1
0
11 Aug 2023
Scale-invariant Bayesian Neural Networks with Connectivity Tangent
  Kernel
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel
Sungyub Kim
Si-hun Park
Kyungsu Kim
Eunho Yang
BDL
24
4
0
30 Sep 2022
Understanding the Generalization Benefit of Normalization Layers:
  Sharpness Reduction
Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
Kaifeng Lyu
Zhiyuan Li
Sanjeev Arora
FAtt
35
69
0
14 Jun 2022
Density Regression and Uncertainty Quantification with Bayesian Deep
  Noise Neural Networks
Density Regression and Uncertainty Quantification with Bayesian Deep Noise Neural Networks
Daiwei Zhang
Tianci Liu
Jian Kang
BDL
UQCV
24
2
0
12 Jun 2022
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent
  Advances and Applications
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCV
UD
19
58
0
03 Nov 2021
Exploring Uncertainty in Deep Learning for Construction of Prediction
  Intervals
Exploring Uncertainty in Deep Learning for Construction of Prediction Intervals
Yuandu Lai
Yucheng Shi
Yahong Han
Yunfeng Shao
Meiyu Qi
Bingshuai Li
UQCV
33
15
0
27 Apr 2021
Uncertainty-Aware COVID-19 Detection from Imbalanced Sound Data
Uncertainty-Aware COVID-19 Detection from Imbalanced Sound Data
Tong Xia
Jing Han
Lorena Qendro
T. Dang
Cecilia Mascolo
24
24
0
05 Apr 2021
Advances in Electron Microscopy with Deep Learning
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
27
2
0
04 Jan 2021
On Batch Normalisation for Approximate Bayesian Inference
On Batch Normalisation for Approximate Bayesian Inference
Jishnu Mukhoti
P. Dokania
Philip H. S. Torr
Y. Gal
BDL
UQCV
29
4
0
24 Dec 2020
The Hidden Uncertainty in a Neural Networks Activations
The Hidden Uncertainty in a Neural Networks Activations
Janis Postels
Hermann Blum
Yannick Strümpler
César Cadena
Roland Siegwart
Luc Van Gool
Federico Tombari
UQCV
16
22
0
05 Dec 2020
DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for
  Uncertainty Inference
DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for Uncertainty Inference
Jiyang Xie
Zhanyu Ma
Jing-Hao Xue
Guoqiang Zhang
Jun Guo
BDL
11
11
0
17 Nov 2020
Drug discovery with explainable artificial intelligence
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
25
625
0
01 Jul 2020
Estimation with Uncertainty via Conditional Generative Adversarial
  Networks
Estimation with Uncertainty via Conditional Generative Adversarial Networks
Minhyeok Lee
Junhee Seok
MedIm
17
14
0
01 Jul 2020
Calibration of Model Uncertainty for Dropout Variational Inference
Calibration of Model Uncertainty for Dropout Variational Inference
M. Laves
Sontje Ihler
Karl-Philipp Kortmann
T. Ortmaier
BDL
UQCV
16
18
0
20 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
19
100
0
15 Jun 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
17
314
0
15 Feb 2020
TRADI: Tracking deep neural network weight distributions for uncertainty
  estimation
TRADI: Tracking deep neural network weight distributions for uncertainty estimation
Gianni Franchi
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
Isabelle Bloch
UQCV
20
51
0
24 Dec 2019
Confidence Calibration and Predictive Uncertainty Estimation for Deep
  Medical Image Segmentation
Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation
Alireza Mehrtash
W. Wells
C. Tempany
Purang Abolmaesumi
Tina Kapur
OOD
FedML
UQCV
11
262
0
29 Nov 2019
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity
  as a Surrogate
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity as a Surrogate
Lu Mi
Hao Wang
Yonglong Tian
Hao He
Nir Shavit
UQCV
21
29
0
28 Sep 2019
Probabilistic framework for solving Visual Dialog
Probabilistic framework for solving Visual Dialog
Badri N. Patro
Anupriy
Vinay P. Namboodiri
BDL
22
13
0
11 Sep 2019
Marginally-calibrated deep distributional regression
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
27
14
0
26 Aug 2019
U-CAM: Visual Explanation using Uncertainty based Class Activation Maps
U-CAM: Visual Explanation using Uncertainty based Class Activation Maps
Badri N. Patro
Mayank Lunayach
Shivansh Patel
Vinay P. Namboodiri
FAtt
UQCV
19
76
0
17 Aug 2019
Sampling-free Epistemic Uncertainty Estimation Using Approximated
  Variance Propagation
Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation
Janis Postels
Francesco Ferroni
Huseyin Coskun
Nassir Navab
Federico Tombari
UQCV
UD
PER
BDL
21
139
0
01 Aug 2019
Efficient Evaluation-Time Uncertainty Estimation by Improved
  Distillation
Efficient Evaluation-Time Uncertainty Estimation by Improved Distillation
Erik Englesson
Hossein Azizpour
UQCV
6
7
0
12 Jun 2019
Evaluating Merging Strategies for Sampling-based Uncertainty Techniques
  in Object Detection
Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection
Dimity Miller
Feras Dayoub
Michael Milford
Niko Sünderhauf
12
105
0
17 Sep 2018
Towards Understanding Regularization in Batch Normalization
Towards Understanding Regularization in Batch Normalization
Ping Luo
Xinjiang Wang
Wenqi Shao
Zhanglin Peng
MLT
AI4CE
8
179
0
04 Sep 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
249
9,134
0
06 Jun 2015
1