ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08773
  4. Cited By
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

24 February 2018
Jiaxuan You
Rex Ying
Xiang Ren
William L. Hamilton
J. Leskovec
    GNN
    BDL
ArXivPDFHTML

Papers citing "GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models"

50 / 426 papers shown
Title
Multi-Type Point Cloud Autoencoder: A Complete Equivariant Embedding for
  Molecule Conformation and Pose
Multi-Type Point Cloud Autoencoder: A Complete Equivariant Embedding for Molecule Conformation and Pose
Michael Kilgour
Mark Tuckerman
J. Rogal
27
0
0
22 May 2024
Score-based Generative Models with Adaptive Momentum
Score-based Generative Models with Adaptive Momentum
Ziqing Wen
Xiaoge Deng
Ping Luo
Tao Sun
Dongsheng Li
DiffM
37
0
0
22 May 2024
KPG: Key Propagation Graph Generator for Rumor Detection based on
  Reinforcement Learning
KPG: Key Propagation Graph Generator for Rumor Detection based on Reinforcement Learning
Yusong Zhang
Kun Xie
Xingyi Zhang
Xiangyu Dong
Sibo Wang
29
0
0
21 May 2024
Discrete-state Continuous-time Diffusion for Graph Generation
Discrete-state Continuous-time Diffusion for Graph Generation
Zhe Xu
Ruizhong Qiu
Yuzhong Chen
Huiyuan Chen
Xiran Fan
Menghai Pan
Zhichen Zeng
Mahashweta Das
Hanghang Tong
32
8
0
19 May 2024
Generated Contents Enrichment
Generated Contents Enrichment
Mahdi Naseri
Jiayan Qiu
Zhou Wang
29
0
0
06 May 2024
Hyperbolic Geometric Latent Diffusion Model for Graph Generation
Hyperbolic Geometric Latent Diffusion Model for Graph Generation
Xingcheng Fu
Yisen Gao
Yuecen Wei
Qingyun Sun
Hao Peng
Jianxin Li
Xianxian Li
27
4
0
06 May 2024
Nip in the Bud: Forecasting and Interpreting Post-exploitation Attacks
  in Real-time through Cyber Threat Intelligence Reports
Nip in the Bud: Forecasting and Interpreting Post-exploitation Attacks in Real-time through Cyber Threat Intelligence Reports
Tiantian Zhu
Jie Ying
Tieming Chen
Chunlin Xiong
Wenrui Cheng
Qixuan Yuan
Aohan Zheng
Mingqi Lv
Yan Chen
28
4
0
05 May 2024
Domain Adaptive and Fine-grained Anomaly Detection for Single-cell
  Sequencing Data and Beyond
Domain Adaptive and Fine-grained Anomaly Detection for Single-cell Sequencing Data and Beyond
Kaichen Xu
Yueyang Ding
Suyang Hou
Weiqiang Zhan
Nisang Chen
Jun Wang
Xiaobo Sun
14
2
0
26 Apr 2024
Proteus: Preserving Model Confidentiality during Graph Optimizations
Proteus: Preserving Model Confidentiality during Graph Optimizations
Yubo Gao
Maryam Haghifam
Christina Giannoula
Renbo Tu
Gennady Pekhimenko
Nandita Vijaykumar
AAML
31
1
0
18 Apr 2024
Graph Reinforcement Learning for Combinatorial Optimization: A Survey
  and Unifying Perspective
Graph Reinforcement Learning for Combinatorial Optimization: A Survey and Unifying Perspective
Victor-Alexandru Darvariu
Stephen Hailes
Mirco Musolesi
AI4CE
40
6
0
09 Apr 2024
AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug
  Design
AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design
Xinze Li
Penglei Wang
Tianfan Fu
Wenhao Gao
Chengtao Li
Leilei Shi
Junhong Liu
33
2
0
02 Apr 2024
SteinGen: Generating Fidelitous and Diverse Graph Samples
SteinGen: Generating Fidelitous and Diverse Graph Samples
G. Reinert
Wenkai Xu
29
1
0
27 Mar 2024
GLAD: Improving Latent Graph Generative Modeling with Simple
  Quantization
GLAD: Improving Latent Graph Generative Modeling with Simple Quantization
Van Khoa Nguyen
Yoann Boget
Frantzeska Lavda
Alexandros Kalousis
29
2
0
25 Mar 2024
Neural Graph Generator: Feature-Conditioned Graph Generation using
  Latent Diffusion Models
Neural Graph Generator: Feature-Conditioned Graph Generation using Latent Diffusion Models
Iakovos Evdaimon
Giannis Nikolentzos
Michail Chatzianastasis
Hadi Abdine
Michalis Vazirgiannis
DiffM
22
4
0
03 Mar 2024
GraphRCG: Self-Conditioned Graph Generation
GraphRCG: Self-Conditioned Graph Generation
Song Wang
Zhen Tan
Xinyu Zhao
Tianlong Chen
Huan Liu
Jundong Li
36
0
0
02 Mar 2024
GNSS Positioning using Cost Function Regulated Multilateration and Graph
  Neural Networks
GNSS Positioning using Cost Function Regulated Multilateration and Graph Neural Networks
Amir Jalalirad
Davide Belli
Bence Major
Songwon Jee
Himanshu Shah
Will Morrison
25
1
0
28 Feb 2024
Graph Diffusion Policy Optimization
Graph Diffusion Policy Optimization
Yijing Liu
Chao Du
Tianyu Pang
Chongxuan Li
Wei Chen
Min-Bin Lin
24
7
0
26 Feb 2024
Large-Language-Model Empowered Dose Volume Histogram Prediction for
  Intensity Modulated Radiotherapy
Large-Language-Model Empowered Dose Volume Histogram Prediction for Intensity Modulated Radiotherapy
Zehao Dong
Yixin Chen
Hiram Gay
Yao Hao
Geoff Hugo
Pamela Samson
Tianyu Zhao
34
0
0
11 Feb 2024
Continual Learning on Graphs: A Survey
Continual Learning on Graphs: A Survey
Zonggui Tian
Duanhao Zhang
Hong-Ning Dai
32
5
0
09 Feb 2024
InstructScene: Instruction-Driven 3D Indoor Scene Synthesis with
  Semantic Graph Prior
InstructScene: Instruction-Driven 3D Indoor Scene Synthesis with Semantic Graph Prior
Chenguo Lin
Yadong Mu
3DV
14
32
0
07 Feb 2024
Pard: Permutation-Invariant Autoregressive Diffusion for Graph
  Generation
Pard: Permutation-Invariant Autoregressive Diffusion for Graph Generation
Lingxiao Zhao
Xueying Ding
L. Akoglu
DiffM
21
8
0
06 Feb 2024
Overcoming Order in Autoregressive Graph Generation
Overcoming Order in Autoregressive Graph Generation
Edo Cohen-Karlik
Eyal Rozenberg
Daniel Freedman
30
1
0
04 Feb 2024
DoseGNN: Improving the Performance of Deep Learning Models in Adaptive
  Dose-Volume Histogram Prediction through Graph Neural Networks
DoseGNN: Improving the Performance of Deep Learning Models in Adaptive Dose-Volume Histogram Prediction through Graph Neural Networks
Zehao Dong
Yixin Chen
Tianyu Zhao
OOD
29
2
0
02 Feb 2024
Data Augmentation for Supervised Graph Outlier Detection with Latent
  Diffusion Models
Data Augmentation for Supervised Graph Outlier Detection with Latent Diffusion Models
Kay Liu
Hengrui Zhang
Ziqing Hu
Fangxin Wang
Philip S. Yu
19
3
0
29 Dec 2023
Classifier-free graph diffusion for molecular property targeting
Classifier-free graph diffusion for molecular property targeting
Matteo Ninniri
Marco Podda
Davide Bacciu
35
5
0
28 Dec 2023
Fine-tuning Graph Neural Networks by Preserving Graph Generative
  Patterns
Fine-tuning Graph Neural Networks by Preserving Graph Generative Patterns
Yifei Sun
Qi Zhu
Yang Yang
Chunping Wang
Tianyu Fan
Jiajun Zhu
Lei Chen
37
12
0
21 Dec 2023
Deep Generative Models for Detector Signature Simulation: A Taxonomic
  Review
Deep Generative Models for Detector Signature Simulation: A Taxonomic Review
Baran Hashemi
Claudius Krause
30
16
0
15 Dec 2023
Efficient and Scalable Graph Generation through Iterative Local
  Expansion
Efficient and Scalable Graph Generation through Iterative Local Expansion
Andreas Bergmeister
Karolis Martinkus
Nathanael Perraudin
Roger Wattenhofer
21
12
0
14 Dec 2023
GAMC: An Unsupervised Method for Fake News Detection using Graph
  Autoencoder with Masking
GAMC: An Unsupervised Method for Fake News Detection using Graph Autoencoder with Masking
Shu Yin
Chao Gao
Zhen Wang
SSL
GNN
34
22
0
10 Dec 2023
On the Role of Edge Dependency in Graph Generative Models
On the Role of Edge Dependency in Graph Generative Models
Sudhanshu Chanpuriya
Cameron Musco
Konstantinos Sotiropoulos
Charalampos E. Tsourakakis
18
1
0
06 Dec 2023
A Simple and Scalable Representation for Graph Generation
A Simple and Scalable Representation for Graph Generation
Yunhui Jang
Seul Lee
Sungsoo Ahn
11
4
0
04 Dec 2023
Leveraging Graph Diffusion Models for Network Refinement Tasks
Leveraging Graph Diffusion Models for Network Refinement Tasks
Puja Trivedi
Ryan A. Rossi
David Arbour
Tong Yu
Franck Dernoncourt
Sungchul Kim
Nedim Lipka
Namyong Park
Nesreen K. Ahmed
Danai Koutra
DiffM
24
0
0
29 Nov 2023
Metric Space Magnitude for Evaluating the Diversity of Latent Representations
Metric Space Magnitude for Evaluating the Diversity of Latent Representations
K. Limbeck
R. Andreeva
Rik Sarkar
Bastian Alexander Rieck
22
3
0
27 Nov 2023
Sparse Training of Discrete Diffusion Models for Graph Generation
Sparse Training of Discrete Diffusion Models for Graph Generation
Yiming Qin
Clément Vignac
Pascal Frossard
19
12
0
03 Nov 2023
VIGraph: Generative Self-supervised Learning for Class-Imbalanced Node
  Classification
VIGraph: Generative Self-supervised Learning for Class-Imbalanced Node Classification
Yulan Hu
Ouyang Sheng
Zhirui Yang
Yong Liu
25
0
0
02 Nov 2023
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising
  Diffusion
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising Diffusion
Jialin Chen
Shirley Wu
Abhijit Gupta
Rex Ying
DiffM
34
4
0
30 Oct 2023
EDGE++: Improved Training and Sampling of EDGE
EDGE++: Improved Training and Sampling of EDGE
Mingyang Wu
Xiaohui Chen
Liping Liu
DiffM
18
2
0
22 Oct 2023
GraphMaker: Can Diffusion Models Generate Large Attributed Graphs?
GraphMaker: Can Diffusion Models Generate Large Attributed Graphs?
Mufei Li
Eleonora Kreacic
Vamsi K. Potluru
Pan Li
DiffM
22
7
0
20 Oct 2023
ARTree: A Deep Autoregressive Model for Phylogenetic Inference
ARTree: A Deep Autoregressive Model for Phylogenetic Inference
Tianyu Xie
Cheng Zhang
20
4
0
14 Oct 2023
Mirage: Model-Agnostic Graph Distillation for Graph Classification
Mirage: Model-Agnostic Graph Distillation for Graph Classification
Mridul Gupta
S. Manchanda
H. Kodamana
Sayan Ranu
DD
18
14
0
14 Oct 2023
Data-centric Graph Learning: A Survey
Data-centric Graph Learning: A Survey
Jixi Liu
Deyu Bo
Cheng Yang
Haoran Dai
Qi Zhang
Yixin Xiao
Yufei Peng
Chuan Shi
GNN
21
19
0
08 Oct 2023
GNNX-BENCH: Unravelling the Utility of Perturbation-based GNN Explainers
  through In-depth Benchmarking
GNNX-BENCH: Unravelling the Utility of Perturbation-based GNN Explainers through In-depth Benchmarking
Mert Kosan
S. Verma
Burouj Armgaan
Khushbu Pahwa
Ambuj K. Singh
Sourav Medya
Sayan Ranu
21
13
0
03 Oct 2023
GraphPatcher: Mitigating Degree Bias for Graph Neural Networks via
  Test-time Augmentation
GraphPatcher: Mitigating Degree Bias for Graph Neural Networks via Test-time Augmentation
Mingxuan Ju
Tong Zhao
Wenhao Yu
Neil Shah
Yanfang Ye
23
12
0
01 Oct 2023
A Comprehensive Review of Community Detection in Graphs
A Comprehensive Review of Community Detection in Graphs
Jiakang Li
Songlai Ning
Zhihao Shuai
Yuan Tan
Yifan Jia
...
Yongxin Ni
Haifeng Qiu
Jiayu Yang
Y. Lu
Yonggang Lu
GNN
19
20
0
21 Sep 2023
PyGraft: Configurable Generation of Synthetic Schemas and Knowledge
  Graphs at Your Fingertips
PyGraft: Configurable Generation of Synthetic Schemas and Knowledge Graphs at Your Fingertips
Nicolas Hubert
Pierre Monnin
Mathieu dÁquin
D. Monticolo
Armelle Brun
22
2
0
07 Sep 2023
Rethinking the Power of Graph Canonization in Graph Representation
  Learning with Stability
Rethinking the Power of Graph Canonization in Graph Representation Learning with Stability
Zehao Dong
Muhan Zhang
Philip R. O. Payne
Michael Province
C. Cruchaga
Tianyu Zhao
Fuhai Li
Yixin Chen
35
1
0
01 Sep 2023
CktGNN: Circuit Graph Neural Network for Electronic Design Automation
CktGNN: Circuit Graph Neural Network for Electronic Design Automation
Zehao Dong
Weidong Cao
Muhan Zhang
Dacheng Tao
Yixin Chen
Xuan Zhang
GNN
26
30
0
31 Aug 2023
Enhancing Graph Transformers with Hierarchical Distance Structural
  Encoding
Enhancing Graph Transformers with Hierarchical Distance Structural Encoding
Yuan Luo
Hongkang Li
Lei Shi
Xiao-Ming Wu
23
7
0
22 Aug 2023
Data-driven Intra-Autonomous Systems Graph Generator
Data-driven Intra-Autonomous Systems Graph Generator
Caio Vinicius Dadauto
N. Fonseca
Ricardo da Silva Torres
19
1
0
09 Aug 2023
GraphRNN Revisited: An Ablation Study and Extensions for Directed
  Acyclic Graphs
GraphRNN Revisited: An Ablation Study and Extensions for Directed Acyclic Graphs
Taniya Das
Mark Koch
Maya Ravichandran
Nikhil Khatri
GNN
11
0
0
26 Jul 2023
Previous
123456789
Next