ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08773
  4. Cited By
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

24 February 2018
Jiaxuan You
Rex Ying
Xiang Ren
William L. Hamilton
J. Leskovec
    GNN
    BDL
ArXivPDFHTML

Papers citing "GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models"

50 / 426 papers shown
Title
Computing Graph Neural Networks: A Survey from Algorithms to
  Accelerators
Computing Graph Neural Networks: A Survey from Algorithms to Accelerators
S. Abadal
Akshay Jain
Robert Guirado
Jorge López-Alonso
Eduard Alarcón
GNN
12
224
0
30 Sep 2020
Factorized Deep Generative Models for Trajectory Generation with
  Spatiotemporal-Validity Constraints
Factorized Deep Generative Models for Trajectory Generation with Spatiotemporal-Validity Constraints
Liming Zhang
Liang Zhao
Dieter Pfoser
6
3
0
20 Sep 2020
Transfer Learning of Graph Neural Networks with Ego-graph Information
  Maximization
Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization
Qi Zhu
Carl Yang
Yidan Xu
Haonan Wang
Chao Zhang
Jiawei Han
37
115
0
11 Sep 2020
Structure-Aware Generation Network for Recipe Generation from Images
Structure-Aware Generation Network for Recipe Generation from Images
Hao Wang
Guosheng Lin
S. Hoi
C. Miao
8
32
0
02 Sep 2020
Meta-Sim2: Unsupervised Learning of Scene Structure for Synthetic Data
  Generation
Meta-Sim2: Unsupervised Learning of Scene Structure for Synthetic Data Generation
Jeevan Devaranjan
Amlan Kar
Sanja Fidler
12
88
0
20 Aug 2020
SketchGraphs: A Large-Scale Dataset for Modeling Relational Geometry in
  Computer-Aided Design
SketchGraphs: A Large-Scale Dataset for Modeling Relational Geometry in Computer-Aided Design
Ari Seff
Yaniv Ovadia
Wenda Zhou
Ryan P. Adams
AI4CE
3DV
13
68
0
16 Jul 2020
A Systematic Survey on Deep Generative Models for Graph Generation
A Systematic Survey on Deep Generative Models for Graph Generation
Xiaojie Guo
Liang Zhao
MedIm
26
145
0
13 Jul 2020
Graph Structure of Neural Networks
Graph Structure of Neural Networks
Jiaxuan You
J. Leskovec
Kaiming He
Saining Xie
GNN
14
136
0
13 Jul 2020
M-Evolve: Structural-Mapping-Based Data Augmentation for Graph
  Classification
M-Evolve: Structural-Mapping-Based Data Augmentation for Graph Classification
Jiajun Zhou
Jie Shen
Shanqing Yu
Guanrong Chen
Qi Xuan
9
23
0
11 Jul 2020
Multilevel Graph Matching Networks for Deep Graph Similarity Learning
Multilevel Graph Matching Networks for Deep Graph Similarity Learning
Xiang Ling
Lingfei Wu
Sai-gang Wang
Tengfei Ma
Fangli Xu
A. Liu
Chunming Wu
S. Ji
12
56
0
08 Jul 2020
GraphOpt: Learning Optimization Models of Graph Formation
GraphOpt: Learning Optimization Models of Graph Formation
Rakshit S. Trivedi
Jiachen Yang
H. Zha
OffRL
14
17
0
07 Jul 2020
AEGCN: An Autoencoder-Constrained Graph Convolutional Network
AEGCN: An Autoencoder-Constrained Graph Convolutional Network
Mingyuan Ma
Sen Na
Hongyu Wang
GNN
13
28
0
03 Jul 2020
Scalable Deep Generative Modeling for Sparse Graphs
Scalable Deep Generative Modeling for Sparse Graphs
H. Dai
Azade Nazi
Yujia Li
Bo Dai
Dale Schuurmans
BDL
17
77
0
28 Jun 2020
GPT-GNN: Generative Pre-Training of Graph Neural Networks
GPT-GNN: Generative Pre-Training of Graph Neural Networks
Ziniu Hu
Yuxiao Dong
Kuansan Wang
Kai-Wei Chang
Yizhou Sun
SSL
AI4CE
18
546
0
27 Jun 2020
Molecule Edit Graph Attention Network: Modeling Chemical Reactions as
  Sequences of Graph Edits
Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of Graph Edits
Mikolaj Sacha
Mikolaj Blaz
Piotr Byrski
Paweł Dąbrowski-Tumański
Mikołaj Chromiński
Rafał Loska
Pawel Wlodarczyk-Pruszynski
Stanislaw Jastrzebski
GNN
4
141
0
27 Jun 2020
Policy-GNN: Aggregation Optimization for Graph Neural Networks
Policy-GNN: Aggregation Optimization for Graph Neural Networks
Kwei-Herng Lai
Daochen Zha
Kaixiong Zhou
Xia Hu
6
90
0
26 Jun 2020
Non-Parametric Graph Learning for Bayesian Graph Neural Networks
Non-Parametric Graph Learning for Bayesian Graph Neural Networks
Soumyasundar Pal
Saber Malekmohammadi
Florence Regol
Yingxue Zhang
Yishi Xu
Mark J. Coates
22
11
0
23 Jun 2020
Hierarchical Inter-Message Passing for Learning on Molecular Graphs
Hierarchical Inter-Message Passing for Learning on Molecular Graphs
Matthias Fey
Jan-Gin Yuen
F. Weichert
GNN
28
85
0
22 Jun 2020
Graph Neural Networks in TensorFlow and Keras with Spektral
Graph Neural Networks in TensorFlow and Keras with Spektral
Daniele Grattarola
C. Alippi
GNN
8
154
0
22 Jun 2020
Iterative Deep Graph Learning for Graph Neural Networks: Better and
  Robust Node Embeddings
Iterative Deep Graph Learning for Graph Neural Networks: Better and Robust Node Embeddings
Yu Chen
Lingfei Wu
Mohammed J. Zaki
22
406
0
21 Jun 2020
Practical Massively Parallel Monte-Carlo Tree Search Applied to
  Molecular Design
Practical Massively Parallel Monte-Carlo Tree Search Applied to Molecular Design
Xiufeng Yang
T. Aasawat
Kazuki Yoshizoe
17
0
0
18 Jun 2020
Neural Architecture Optimization with Graph VAE
Neural Architecture Optimization with Graph VAE
Jian Li
Yong Liu
Jiankun Liu
Weiping Wang
GNN
13
16
0
18 Jun 2020
UV-Net: Learning from Boundary Representations
UV-Net: Learning from Boundary Representations
P. Jayaraman
Aditya Sanghi
Joseph G. Lambourne
Karl D. D. Willis
T. Davies
Hooman Shayani
Nigel Morris
8
11
0
18 Jun 2020
Categorical Normalizing Flows via Continuous Transformations
Categorical Normalizing Flows via Continuous Transformations
Phillip Lippe
E. Gavves
BDL
13
43
0
17 Jun 2020
Self-supervised Learning: Generative or Contrastive
Self-supervised Learning: Generative or Contrastive
Xiao Liu
Fanjin Zhang
Zhenyu Hou
Zhaoyu Wang
Li Mian
Jing Zhang
Jie Tang
SSL
24
1,582
0
15 Jun 2020
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Xiaojie Guo
Liang Zhao
Zhao Qin
Lingfei Wu
Amarda Shehu
Yanfang Ye
CoGe
DRL
30
46
0
09 Jun 2020
Graph-Aware Transformer: Is Attention All Graphs Need?
Graph-Aware Transformer: Is Attention All Graphs Need?
Sang-yong Yoo
Young-Seok Kim
Kang Lee
Kuhwan Jeong
Junhwi Choi
Hoshik Lee
Y. S. Choi
GNN
6
11
0
09 Jun 2020
DeepGG: a Deep Graph Generator
DeepGG: a Deep Graph Generator
Julian Stier
Michael Granitzer
GNN
BDL
22
5
0
07 Jun 2020
SHADOWCAST: Controllable Graph Generation
SHADOWCAST: Controllable Graph Generation
W. Tann
E. Chang
Bryan Hooi
6
2
0
06 Jun 2020
Auto-decoding Graphs
Auto-decoding Graphs
Sohil Shah
V. Koltun
GNN
26
4
0
04 Jun 2020
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Ines Chami
Sami Abu-El-Haija
Bryan Perozzi
Christopher Ré
Kevin Patrick Murphy
20
284
0
07 May 2020
Secure Deep Graph Generation with Link Differential Privacy
Secure Deep Graph Generation with Link Differential Privacy
Carl Yang
Haonan Wang
Ke Zhang
Liang Chen
Lichao Sun
20
40
0
01 May 2020
Graph2Plan: Learning Floorplan Generation from Layout Graphs
Graph2Plan: Learning Floorplan Generation from Layout Graphs
Ruizhen Hu
Zeyu Huang
Yuhan Tang
Oliver Matias van Kaick
Hao Zhang
Hui Huang
GNN
DRL
15
118
0
27 Apr 2020
Tree Echo State Autoencoders with Grammars
Tree Echo State Autoencoders with Grammars
Benjamin Paassen
I. Koprinska
K. Yacef
6
2
0
19 Apr 2020
MxPool: Multiplex Pooling for Hierarchical Graph Representation Learning
MxPool: Multiplex Pooling for Hierarchical Graph Representation Learning
Yanyan Liang
Yanfeng Zhang
Dechao Gao
Qian Xu
GNN
6
4
0
15 Apr 2020
Generating Tertiary Protein Structures via an Interpretative Variational
  Autoencoder
Generating Tertiary Protein Structures via an Interpretative Variational Autoencoder
Xiaojie Guo
Yuanqi Du
Sivani Tadepalli
Liang Zhao
Amarda Shehu
DRL
14
26
0
08 Apr 2020
FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets
FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets
Ming Liang
Yao Meng
Jiyu Wang
D. Lubkeman
N. Lu
GAN
9
21
0
03 Apr 2020
A Graph to Graphs Framework for Retrosynthesis Prediction
A Graph to Graphs Framework for Retrosynthesis Prediction
Chence Shi
Minkai Xu
Hongyu Guo
Ming Zhang
Jian Tang
6
151
0
28 Mar 2020
Deep Multi-attributed Graph Translation with Node-Edge Co-evolution
Deep Multi-attributed Graph Translation with Node-Edge Co-evolution
Xiaojie Guo
Liang Zhao
Cameron Nowzari
S. Rafatirad
Houman Homayoun
Sai Manoj Pudukotai Dinakarrao
37
27
0
22 Mar 2020
Deterministic Decoding for Discrete Data in Variational Autoencoders
Deterministic Decoding for Discrete Data in Variational Autoencoders
Daniil Polykovskiy
Dmitry Vetrov
OffRL
8
8
0
04 Mar 2020
Learning to Generate Time Series Conditioned Graphs with Generative
  Adversarial Nets
Learning to Generate Time Series Conditioned Graphs with Generative Adversarial Nets
Shanchao Yang
Jing Liu
K. Wu
Mingming Li
GAN
AI4CE
40
3
0
03 Mar 2020
EvoNet: A Neural Network for Predicting the Evolution of Dynamic Graphs
EvoNet: A Neural Network for Predicting the Evolution of Dynamic Graphs
Changmin Wu
Giannis Nikolentzos
Michalis Vazirgiannis
GNN
19
10
0
02 Mar 2020
Permutation Invariant Graph Generation via Score-Based Generative
  Modeling
Permutation Invariant Graph Generation via Score-Based Generative Modeling
Chenhao Niu
Yang Song
Jiaming Song
Shengjia Zhao
Aditya Grover
Stefano Ermon
DiffM
23
258
0
02 Mar 2020
An End-to-End Graph Convolutional Kernel Support Vector Machine
An End-to-End Graph Convolutional Kernel Support Vector Machine
P. Corcoran
10
5
0
29 Feb 2020
A Deep Generative Model for Fragment-Based Molecule Generation
A Deep Generative Model for Fragment-Based Molecule Generation
Marco Podda
D. Bacciu
A. Micheli
VLM
BDL
4
51
0
28 Feb 2020
PolyGen: An Autoregressive Generative Model of 3D Meshes
PolyGen: An Autoregressive Generative Model of 3D Meshes
C. Nash
Yaroslav Ganin
A. Eslami
Peter W. Battaglia
AI4CE
4
254
0
23 Feb 2020
Struct-MMSB: Mixed Membership Stochastic Blockmodels with Interpretable
  Structured Priors
Struct-MMSB: Mixed Membership Stochastic Blockmodels with Interpretable Structured Priors
Yue Zhang
Arti Ramesh
16
2
0
21 Feb 2020
Graph Deconvolutional Generation
Graph Deconvolutional Generation
Daniel Flam-Shepherd
Tony C Wu
Alán Aspuru-Guzik
BDL
15
31
0
14 Feb 2020
Can Graph Neural Networks Count Substructures?
Can Graph Neural Networks Count Substructures?
Zhengdao Chen
Lei Chen
Soledad Villar
Joan Bruna
GNN
37
319
0
10 Feb 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
19
278
0
08 Feb 2020
Previous
123456789
Next