Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.10275
Cited By
Solving for high dimensional committor functions using artificial neural networks
28 February 2018
Y. Khoo
Jianfeng Lu
Lexing Ying
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Solving for high dimensional committor functions using artificial neural networks"
50 / 51 papers shown
Title
Estimating Committor Functions via Deep Adaptive Sampling on Rare Transition Paths
Yueyang Wang
Kejun Tang
Xili Wang
Xiaoliang Wan
Weiqing Ren
Chao Yang
40
0
0
28 Jan 2025
The fast committor machine: Interpretable prediction with kernels
D. Aristoff
Mats S. Johnson
Gideon Simpson
Robert J. Webber
26
5
0
16 May 2024
Deep Learning Method for Computing Committor Functions with Adaptive Sampling
Bo Lin
Weiqing Ren
23
3
0
09 Apr 2024
Computing Transition Pathways for the Study of Rare Events Using Deep Reinforcement Learning
Bo Lin
Yangzheng Zhong
Weiqing Ren
11
0
0
08 Apr 2024
Accelerated Sampling of Rare Events using a Neural Network Bias Potential
Xinru Hua
R. Ahmad
Jose Blanchet
Wei Cai
AI4CE
82
3
0
13 Jan 2024
Randomized Sparse Neural Galerkin Schemes for Solving Evolution Equations with Deep Networks
Jules Berman
Benjamin Peherstorfer
26
13
0
07 Oct 2023
Diffusion Methods for Generating Transition Paths
Luke Triplett
Jianfeng Lu
17
5
0
19 Sep 2023
Coupling parameter and particle dynamics for adaptive sampling in Neural Galerkin schemes
Yuxiao Wen
Eric Vanden-Eijnden
Benjamin Peherstorfer
24
12
0
27 Jun 2023
A Finite Expression Method for Solving High-Dimensional Committor Problems
Zezheng Song
M. Cameron
Haizhao Yang
16
6
0
21 Jun 2023
Probing reaction channels via reinforcement learning
Senwei Liang
Aditya Singh
Yuanran Zhu
David T. Limmer
Chao Yang
23
6
0
27 May 2023
GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs
Yanlai Chen
Shawn Koohy
PINN
AI4CE
34
24
0
27 Mar 2023
Inexact iterative numerical linear algebra for neural network-based spectral estimation and rare-event prediction
J. Strahan
Spencer C. Guo
Chatipat Lorpaiboon
Aaron R Dinner
J. Weare
17
9
0
22 Mar 2023
Computing non-equilibrium trajectories by a deep learning approach
E. Simonnet
AI4CE
27
6
0
08 Oct 2022
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
23
11
0
28 Sep 2022
Adaptive importance sampling based on fault tree analysis for piecewise deterministic Markov process
G. Chennetier
Hassane Chraïbi
A. Dutfoy
Josselin Garnier
32
2
0
17 Sep 2022
The Mori-Zwanzig formulation of deep learning
D. Venturi
Xiantao Li
20
1
0
12 Sep 2022
Approximation of Functionals by Neural Network without Curse of Dimensionality
Yahong Yang
Yang Xiang
26
6
0
28 May 2022
Neural Galerkin Schemes with Active Learning for High-Dimensional Evolution Equations
Joan Bruna
Benjamin Peherstorfer
Eric Vanden-Eijnden
19
60
0
02 Mar 2022
Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems
Nikolas Nusken
Lorenz Richter
PINN
DiffM
31
27
0
07 Dec 2021
Computing the Invariant Distribution of Randomly Perturbed Dynamical Systems Using Deep Learning
Bo Lin
Qianxiao Li
W. Ren
23
8
0
22 Oct 2021
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs
Nils Wandel
Michael Weinmann
Michael Neidlin
Reinhard Klein
AI4CE
58
60
0
15 Sep 2021
Supervised Learning and the Finite-Temperature String Method for Computing Committor Functions and Reaction Rates
Muhammad R Hasyim
Clay H. Batton
K. Mandadapu
19
10
0
28 Jul 2021
On the Representation of Solutions to Elliptic PDEs in Barron Spaces
Ziang Chen
Jianfeng Lu
Yulong Lu
35
26
0
14 Jun 2021
Reinforcement learning of rare diffusive dynamics
Avishek Das
Dominic C. Rose
J. P. Garrahan
David T. Limmer
14
27
0
10 May 2021
A semigroup method for high dimensional elliptic PDEs and eigenvalue problems based on neural networks
Haoya Li
Lexing Ying
19
10
0
07 May 2021
Neural network architectures using min-plus algebra for solving certain high dimensional optimal control problems and Hamilton-Jacobi PDEs
Jérome Darbon
P. Dower
Tingwei Meng
8
22
0
07 May 2021
A Priori Generalization Error Analysis of Two-Layer Neural Networks for Solving High Dimensional Schrödinger Eigenvalue Problems
Jianfeng Lu
Yulong Lu
34
29
0
04 May 2021
A Priori Generalization Analysis of the Deep Ritz Method for Solving High Dimensional Elliptic Equations
Jianfeng Lu
Yulong Lu
Min Wang
36
37
0
05 Jan 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
Teaching the Incompressible Navier-Stokes Equations to Fast Neural Surrogate Models in 3D
Nils Wandel
Michael Weinmann
Reinhard Klein
AI4CE
26
50
0
22 Dec 2020
A semigroup method for high dimensional committor functions based on neural network
Haoya Li
Y. Khoo
Yinuo Ren
Lexing Ying
8
6
0
12 Dec 2020
Active Importance Sampling for Variational Objectives Dominated by Rare Events: Consequences for Optimization and Generalization
Grant M. Rotskoff
Andrew R. Mitchell
Eric Vanden-Eijnden
6
13
0
11 Aug 2020
Two-Layer Neural Networks for Partial Differential Equations: Optimization and Generalization Theory
Tao Luo
Haizhao Yang
32
73
0
28 Jun 2020
Learning Incompressible Fluid Dynamics from Scratch -- Towards Fast, Differentiable Fluid Models that Generalize
Nils Wandel
Michael Weinmann
Reinhard Klein
AI4CE
19
8
0
15 Jun 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
125
508
0
11 Mar 2020
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
91
387
0
10 Mar 2020
On generalized residue network for deep learning of unknown dynamical systems
Zhen Chen
D. Xiu
AI4CE
19
46
0
23 Jan 2020
Machine Learning from a Continuous Viewpoint
E. Weinan
Chao Ma
Lei Wu
23
102
0
30 Dec 2019
Solving Inverse Wave Scattering with Deep Learning
Yuwei Fan
Lexing Ying
11
26
0
27 Nov 2019
Solving Traveltime Tomography with Deep Learning
Yuwei Fan
Lexing Ying
16
13
0
25 Nov 2019
Solving Optical Tomography with Deep Learning
Yuwei Fan
Lexing Ying
11
15
0
10 Oct 2019
Learning Everywhere: A Taxonomy for the Integration of Machine Learning and Simulations
Geoffrey C. Fox
S. Jha
AI4CE
13
13
0
29 Sep 2019
Meta-learning Pseudo-differential Operators with Deep Neural Networks
Jordi Feliu-Fabà
Yuwei Fan
Lexing Ying
14
39
0
16 Jun 2019
Computing Committor Functions for the Study of Rare Events Using Deep Learning
Qianxiao Li
Bo Lin
W. Ren
14
67
0
14 Jun 2019
Modeling the Dynamics of PDE Systems with Physics-Constrained Deep Auto-Regressive Networks
N. Geneva
N. Zabaras
AI4CE
10
268
0
13 Jun 2019
Solving Electrical Impedance Tomography with Deep Learning
Yuwei Fan
Lexing Ying
12
100
0
06 Jun 2019
Neural Jump Stochastic Differential Equations
J. Jia
Austin R. Benson
BDL
20
222
0
24 May 2019
Variational training of neural network approximations of solution maps for physical models
Yingzhou Li
Jianfeng Lu
Anqi Mao
GAN
17
35
0
07 May 2019
SwitchNet: a neural network model for forward and inverse scattering problems
Y. Khoo
Lexing Ying
20
132
0
23 Oct 2018
Butterfly-Net: Optimal Function Representation Based on Convolutional Neural Networks
Yingzhou Li
Xiuyuan Cheng
Jianfeng Lu
21
23
0
18 May 2018
1
2
Next