ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.10567
  4. Cited By
Learning by Playing - Solving Sparse Reward Tasks from Scratch

Learning by Playing - Solving Sparse Reward Tasks from Scratch

28 February 2018
Martin Riedmiller
Roland Hafner
Thomas Lampe
Michael Neunert
Jonas Degrave
T. Wiele
Volodymyr Mnih
N. Heess
Jost Tobias Springenberg
ArXivPDFHTML

Papers citing "Learning by Playing - Solving Sparse Reward Tasks from Scratch"

41 / 91 papers shown
Title
Decoupled Exploration and Exploitation Policies for Sample-Efficient
  Reinforcement Learning
Decoupled Exploration and Exploitation Policies for Sample-Efficient Reinforcement Learning
William F. Whitney
Michael Bloesch
Jost Tobias Springenberg
A. Abdolmaleki
Kyunghyun Cho
Martin Riedmiller
OffRL
29
13
0
23 Jan 2021
Asymmetric self-play for automatic goal discovery in robotic
  manipulation
Asymmetric self-play for automatic goal discovery in robotic manipulation
OpenAI OpenAI
Matthias Plappert
Raul Sampedro
Tao Xu
Ilge Akkaya
...
Hyeonwoo Noh
Lilian Weng
Qiming Yuan
Casey Chu
Wojciech Zaremba
SSL
82
76
0
13 Jan 2021
The Distracting Control Suite -- A Challenging Benchmark for
  Reinforcement Learning from Pixels
The Distracting Control Suite -- A Challenging Benchmark for Reinforcement Learning from Pixels
Austin Stone
Oscar Ramirez
K. Konolige
Rico Jonschkowski
137
101
0
07 Jan 2021
Behavior Priors for Efficient Reinforcement Learning
Behavior Priors for Efficient Reinforcement Learning
Dhruva Tirumala
Alexandre Galashov
Hyeonwoo Noh
Leonard Hasenclever
Razvan Pascanu
...
Guillaume Desjardins
Wojciech M. Czarnecki
Arun Ahuja
Yee Whye Teh
N. Heess
37
39
0
27 Oct 2020
Revisiting Design Choices in Proximal Policy Optimization
Revisiting Design Choices in Proximal Policy Optimization
Chloe Ching-Yun Hsu
Celestine Mendler-Dünner
Moritz Hardt
17
53
0
23 Sep 2020
Towards General and Autonomous Learning of Core Skills: A Case Study in
  Locomotion
Towards General and Autonomous Learning of Core Skills: A Case Study in Locomotion
Roland Hafner
Tim Hertweck
Philipp Kloppner
Michael Bloesch
Michael Neunert
Markus Wulfmeier
S. Tunyasuvunakool
N. Heess
Martin Riedmiller
20
19
0
06 Aug 2020
Data-efficient Hindsight Off-policy Option Learning
Data-efficient Hindsight Off-policy Option Learning
Markus Wulfmeier
Dushyant Rao
Roland Hafner
Thomas Lampe
A. Abdolmaleki
...
Michael Neunert
Dhruva Tirumala
Noah Y. Siegel
N. Heess
Martin Riedmiller
OffRL
23
47
0
30 Jul 2020
RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real
RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real
Kanishka Rao
Chris Harris
A. Irpan
Sergey Levine
Julian Ibarz
Mohi Khansari
32
182
0
16 Jun 2020
A Distributional View on Multi-Objective Policy Optimization
A Distributional View on Multi-Objective Policy Optimization
A. Abdolmaleki
Sandy H. Huang
Leonard Hasenclever
Michael Neunert
H. F. Song
Martina Zambelli
M. Martins
N. Heess
R. Hadsell
Martin Riedmiller
21
74
0
15 May 2020
Self-Paced Deep Reinforcement Learning
Self-Paced Deep Reinforcement Learning
Pascal Klink
Carlo DÉramo
Jan Peters
Joni Pajarinen
ODL
38
54
0
24 Apr 2020
Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
  Reinforcement Learning
Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic Reinforcement Learning
Ryan Julian
Benjamin Swanson
Gaurav Sukhatme
Sergey Levine
Chelsea Finn
Karol Hausman
OnRL
CLL
25
43
0
21 Apr 2020
Multi-Task Reinforcement Learning with Soft Modularization
Multi-Task Reinforcement Learning with Soft Modularization
Ruihan Yang
Huazhe Xu
Yi Wu
Xiaolong Wang
27
175
0
30 Mar 2020
Curriculum Learning for Reinforcement Learning Domains: A Framework and
  Survey
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey
Sanmit Narvekar
Bei Peng
Matteo Leonetti
Jivko Sinapov
Matthew E. Taylor
Peter Stone
ODL
152
458
0
10 Mar 2020
Automatic Curriculum Learning For Deep RL: A Short Survey
Automatic Curriculum Learning For Deep RL: A Short Survey
Rémy Portelas
Cédric Colas
Lilian Weng
Katja Hofmann
Pierre-Yves Oudeyer
ODL
19
167
0
10 Mar 2020
Rewriting History with Inverse RL: Hindsight Inference for Policy
  Improvement
Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement
Benjamin Eysenbach
Xinyang Geng
Sergey Levine
Ruslan Salakhutdinov
OffRL
18
86
0
25 Feb 2020
Keep Doing What Worked: Behavioral Modelling Priors for Offline
  Reinforcement Learning
Keep Doing What Worked: Behavioral Modelling Priors for Offline Reinforcement Learning
Noah Y. Siegel
Jost Tobias Springenberg
Felix Berkenkamp
A. Abdolmaleki
Michael Neunert
Thomas Lampe
Roland Hafner
Nicolas Heess
Martin Riedmiller
OffRL
22
282
0
19 Feb 2020
Gradient Surgery for Multi-Task Learning
Gradient Surgery for Multi-Task Learning
Tianhe Yu
Saurabh Kumar
Abhishek Gupta
Sergey Levine
Karol Hausman
Chelsea Finn
36
1,165
0
19 Jan 2020
Predictive Coding for Boosting Deep Reinforcement Learning with Sparse
  Rewards
Predictive Coding for Boosting Deep Reinforcement Learning with Sparse Rewards
Xingyu Lu
Stas Tiomkin
Pieter Abbeel
OffRL
27
4
0
21 Dec 2019
Attention-Privileged Reinforcement Learning
Attention-Privileged Reinforcement Learning
Sasha Salter
Dushyant Rao
Markus Wulfmeier
R. Hadsell
Ingmar Posner
23
8
0
19 Nov 2019
Influence-Based Multi-Agent Exploration
Influence-Based Multi-Agent Exploration
Tonghan Wang
Jianhao Wang
Yi Wu
Chongjie Zhang
18
137
0
12 Oct 2019
Imagined Value Gradients: Model-Based Policy Optimization with
  Transferable Latent Dynamics Models
Imagined Value Gradients: Model-Based Policy Optimization with Transferable Latent Dynamics Models
Arunkumar Byravan
Jost Tobias Springenberg
A. Abdolmaleki
Roland Hafner
Michael Neunert
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
OffRL
11
41
0
09 Oct 2019
Discovery of Useful Questions as Auxiliary Tasks
Discovery of Useful Questions as Auxiliary Tasks
Vivek Veeriah
Matteo Hessel
Zhongwen Xu
Richard L. Lewis
Janarthanan Rajendran
Junhyuk Oh
H. V. Hasselt
David Silver
Satinder Singh
LLMAG
14
86
0
10 Sep 2019
DisCoRL: Continual Reinforcement Learning via Policy Distillation
DisCoRL: Continual Reinforcement Learning via Policy Distillation
Kalifou René Traoré
Hugo Caselles-Dupré
Timothée Lesort
Te Sun
Guanghang Cai
Natalia Díaz Rodríguez
David Filliat
OffRL
32
60
0
11 Jul 2019
A Review of Robot Learning for Manipulation: Challenges,
  Representations, and Algorithms
A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms
Oliver Kroemer
S. Niekum
George Konidaris
33
356
0
06 Jul 2019
Compositional Transfer in Hierarchical Reinforcement Learning
Compositional Transfer in Hierarchical Reinforcement Learning
Markus Wulfmeier
A. Abdolmaleki
Roland Hafner
Jost Tobias Springenberg
Michael Neunert
Tim Hertweck
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
19
27
0
26 Jun 2019
Goal-conditioned Imitation Learning
Goal-conditioned Imitation Learning
Yiming Ding
Carlos Florensa
Mariano Phielipp
Pieter Abbeel
22
219
0
13 Jun 2019
Curriculum Learning for Cumulative Return Maximization
Curriculum Learning for Cumulative Return Maximization
Francesco Foglino
Christiano Coletto Christakou
Ricardo Luna Gutierrez
Matteo Leonetti
34
9
0
13 Jun 2019
Exploration via Hindsight Goal Generation
Exploration via Hindsight Goal Generation
Zhizhou Ren
Kefan Dong
Yuanshuo Zhou
Qiang Liu
Jian-wei Peng
29
85
0
10 Jun 2019
Meta reinforcement learning as task inference
Meta reinforcement learning as task inference
Jan Humplik
Alexandre Galashov
Leonard Hasenclever
Pedro A. Ortega
Yee Whye Teh
N. Heess
OffRL
29
127
0
15 May 2019
Structured agents for physical construction
Structured agents for physical construction
V. Bapst
Alvaro Sanchez-Gonzalez
Carl Doersch
Kimberly L. Stachenfeld
Pushmeet Kohli
Peter W. Battaglia
Jessica B. Hamrick
AI4CE
30
99
0
05 Apr 2019
Discovering Options for Exploration by Minimizing Cover Time
Discovering Options for Exploration by Minimizing Cover Time
Yuu Jinnai
Jee Won Park
David Abel
George Konidaris
14
52
0
02 Mar 2019
DIViS: Domain Invariant Visual Servoing for Collision-Free Goal Reaching
DIViS: Domain Invariant Visual Servoing for Collision-Free Goal Reaching
Fereshteh Sadeghi
13
28
0
18 Feb 2019
Relative Entropy Regularized Policy Iteration
Relative Entropy Regularized Policy Iteration
A. Abdolmaleki
Jost Tobias Springenberg
Jonas Degrave
Steven Bohez
Yuval Tassa
Dan Belov
N. Heess
Martin Riedmiller
16
72
0
05 Dec 2018
Learning Curriculum Policies for Reinforcement Learning
Learning Curriculum Policies for Reinforcement Learning
Sanmit Narvekar
Peter Stone
21
84
0
01 Dec 2018
Unsupervised Control Through Non-Parametric Discriminative Rewards
Unsupervised Control Through Non-Parametric Discriminative Rewards
David Warde-Farley
T. Wiele
Tejas D. Kulkarni
Catalin Ionescu
Steven Hansen
Volodymyr Mnih
DRL
OffRL
SSL
38
172
0
28 Nov 2018
Meta-Learning for Multi-objective Reinforcement Learning
Meta-Learning for Multi-objective Reinforcement Learning
Xi Chen
Ali Ghadirzadeh
Mårten Björkman
Pablo G. Cámara
OffRL
19
54
0
08 Nov 2018
CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement
  Learning
CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning
Cédric Colas
Pierre Fournier
Olivier Sigaud
Mohamed Chetouani
Pierre-Yves Oudeyer
25
39
0
15 Oct 2018
ARCHER: Aggressive Rewards to Counter bias in Hindsight Experience
  Replay
ARCHER: Aggressive Rewards to Counter bias in Hindsight Experience Replay
Sameera Lanka
Tianfu Wu
15
30
0
06 Sep 2018
Multi-objective Model-based Policy Search for Data-efficient Learning
  with Sparse Rewards
Multi-objective Model-based Policy Search for Data-efficient Learning with Sparse Rewards
Rituraj Kaushik
Konstantinos Chatzilygeroudis
Jean-Baptiste Mouret
20
19
0
25 Jun 2018
RUDDER: Return Decomposition for Delayed Rewards
RUDDER: Return Decomposition for Delayed Rewards
Jose A. Arjona-Medina
Michael Gillhofer
Michael Widrich
Thomas Unterthiner
Johannes Brandstetter
Sepp Hochreiter
27
212
0
20 Jun 2018
Emergence of Locomotion Behaviours in Rich Environments
Emergence of Locomotion Behaviours in Rich Environments
N. Heess
TB Dhruva
S. Sriram
Jay Lemmon
J. Merel
...
Tom Erez
Ziyun Wang
S. M. Ali Eslami
Martin Riedmiller
David Silver
140
928
0
07 Jul 2017
Previous
12