Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.00225
Cited By
Global Convergence of Block Coordinate Descent in Deep Learning
1 March 2018
Jinshan Zeng
Tim Tsz-Kit Lau
Shaobo Lin
Y. Yao
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Global Convergence of Block Coordinate Descent in Deep Learning"
10 / 10 papers shown
Title
On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness
Shengkun Zhu
Jinshan Zeng
Sheng Wang
Yuan Sun
Xiaodong Li
Yuan Yao
Zhiyong Peng
44
0
0
23 Jul 2024
On Model Compression for Neural Networks: Framework, Algorithm, and Convergence Guarantee
Chenyang Li
Jihoon Chung
Mengnan Du
Haimin Wang
Xianlian Zhou
Bohao Shen
33
1
0
13 Mar 2023
Personalized On-Device E-health Analytics with Decentralized Block Coordinate Descent
Guanhua Ye
Hongzhi Yin
Tong Chen
Miao Xu
Quoc Viet Hung Nguyen
Jiangning Song
39
9
0
17 Dec 2021
Stability and Generalization for Randomized Coordinate Descent
Puyu Wang
Liang Wu
Yunwen Lei
18
7
0
17 Aug 2021
Coordinate descent on the orthogonal group for recurrent neural network training
E. Massart
V. Abrol
29
10
0
30 Jul 2021
Stochastic Block-ADMM for Training Deep Networks
Saeed Khorram
Xiao Fu
Mohamad H. Danesh
Zhongang Qi
Li Fuxin
29
3
0
01 May 2021
Training Deep Architectures Without End-to-End Backpropagation: A Survey on the Provably Optimal Methods
Shiyu Duan
José C. Príncipe
MQ
20
3
0
09 Jan 2021
Implicit Deep Learning
L. Ghaoui
Fangda Gu
Bertrand Travacca
Armin Askari
Alicia Y. Tsai
AI4CE
34
176
0
17 Aug 2019
Lifted Neural Networks
Armin Askari
Geoffrey Negiar
Rajiv Sambharya
L. Ghaoui
26
37
0
03 May 2018
Block-Cyclic Stochastic Coordinate Descent for Deep Neural Networks
Kensuke Nakamura
Stefano Soatto
Byung-Woo Hong
BDL
ODL
32
6
0
20 Nov 2017
1