ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.01118
  4. Cited By
Some Considerations on Learning to Explore via Meta-Reinforcement
  Learning
v1v2 (latest)

Some Considerations on Learning to Explore via Meta-Reinforcement Learning

3 March 2018
Bradly C. Stadie
Ge Yang
Rein Houthooft
Xi Chen
Yan Duan
Yuhuai Wu
Pieter Abbeel
Ilya Sutskever
    LRM
ArXiv (abs)PDFHTML

Papers citing "Some Considerations on Learning to Explore via Meta-Reinforcement Learning"

25 / 75 papers shown
Learning Context-aware Task Reasoning for Efficient Meta-reinforcement
  Learning
Learning Context-aware Task Reasoning for Efficient Meta-reinforcement LearningAdaptive Agents and Multi-Agent Systems (AAMAS), 2020
Haozhe Jasper Wang
Jiale Zhou
Xuming He
OffRLLRM
167
18
0
03 Mar 2020
Curriculum in Gradient-Based Meta-Reinforcement Learning
Curriculum in Gradient-Based Meta-Reinforcement Learning
Bhairav Mehta
T. Deleu
Sharath Chandra Raparthy
C. Pal
Liam Paull
182
20
0
19 Feb 2020
Bayesian Residual Policy Optimization: Scalable Bayesian Reinforcement
  Learning with Clairvoyant Experts
Bayesian Residual Policy Optimization: Scalable Bayesian Reinforcement Learning with Clairvoyant ExpertsIEEE/RJS International Conference on Intelligent RObots and Systems (IROS), 2020
Gilwoo Lee
Brian Hou
Sanjiban Choudhury
S. Srinivasa
BDLOffRL
197
8
0
07 Feb 2020
Unsupervised Curricula for Visual Meta-Reinforcement Learning
Unsupervised Curricula for Visual Meta-Reinforcement LearningNeural Information Processing Systems (NeurIPS), 2019
Allan Jabri
Kyle Hsu
Benjamin Eysenbach
Abhishek Gupta
Sergey Levine
Chelsea Finn
VLMOODSSLOffRL
164
66
0
09 Dec 2019
BADGER: Learning to (Learn [Learning Algorithms] through Multi-Agent
  Communication)
BADGER: Learning to (Learn [Learning Algorithms] through Multi-Agent Communication)
Marek Rosa
O. Afanasjeva
Simon Andersson
Joseph Davidson
N. Guttenberg
Petr Hlubucek
Martin Poliak
Jaroslav Vítků
Jan Feyereisl
191
10
0
03 Dec 2019
MAME : Model-Agnostic Meta-Exploration
MAME : Model-Agnostic Meta-ExplorationConference on Robot Learning (CoRL), 2019
Swaminathan Gurumurthy
Sumit Kumar
Katia Sycara
206
15
0
11 Nov 2019
VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning
VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-LearningInternational Conference on Learning Representations (ICLR), 2019
L. Zintgraf
K. Shiarlis
Maximilian Igl
Sebastian Schulze
Y. Gal
Katja Hofmann
Shimon Whiteson
OffRL
321
304
0
18 Oct 2019
Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function
  Estimators for Reinforcement Learning
Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function Estimators for Reinforcement LearningNeural Information Processing Systems (NeurIPS), 2019
Gregory Farquhar
Shimon Whiteson
Jakob N. Foerster
128
18
0
23 Sep 2019
Meta Reinforcement Learning for Sim-to-real Domain Adaptation
Meta Reinforcement Learning for Sim-to-real Domain AdaptationIEEE International Conference on Robotics and Automation (ICRA), 2019
Karol Arndt
Murtaza Hazara
Ali Ghadirzadeh
Ville Kyrki
238
115
0
16 Sep 2019
Discovery of Useful Questions as Auxiliary Tasks
Discovery of Useful Questions as Auxiliary TasksNeural Information Processing Systems (NeurIPS), 2019
Vivek Veeriah
Matteo Hessel
Zhongwen Xu
Richard L. Lewis
Janarthanan Rajendran
Junhyuk Oh
H. V. Hasselt
David Silver
Satinder Singh
LLMAG
157
88
0
10 Sep 2019
Watch, Try, Learn: Meta-Learning from Demonstrations and Reward
Watch, Try, Learn: Meta-Learning from Demonstrations and RewardInternational Conference on Learning Representations (ICLR), 2019
Allan Zhou
Eric Jang
Daniel Kappler
Alexander Herzog
Mohi Khansari
Paul Wohlhart
Yunfei Bai
Mrinal Kalakrishnan
Sergey Levine
Chelsea Finn
343
52
0
07 Jun 2019
Continual Reinforcement Learning in 3D Non-stationary Environments
Continual Reinforcement Learning in 3D Non-stationary Environments
Vincenzo Lomonaco
Karan Desai
Eugenio Culurciello
Davide Maltoni
OffRL
190
46
0
24 May 2019
Zero-shot task adaptation by homoiconic meta-mapping
Zero-shot task adaptation by homoiconic meta-mapping
Andrew Kyle Lampinen
James L. McClelland
244
1
0
23 May 2019
Meta Reinforcement Learning with Task Embedding and Shared Policy
Meta Reinforcement Learning with Task Embedding and Shared PolicyInternational Joint Conference on Artificial Intelligence (IJCAI), 2019
Lin Lan
Zhenguo Li
X. Guan
Peijie Wang
OffRL
276
52
0
16 May 2019
Guided Meta-Policy Search
Guided Meta-Policy Search
Russell Mendonca
Abhishek Gupta
Rosen Kralev
Pieter Abbeel
Sergey Levine
Chelsea Finn
141
60
0
01 Apr 2019
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic
  Context Variables
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context VariablesInternational Conference on Machine Learning (ICML), 2019
Kate Rakelly
Aurick Zhou
Deirdre Quillen
Chelsea Finn
Sergey Levine
OffRL
237
742
0
19 Mar 2019
Concurrent Meta Reinforcement Learning
Concurrent Meta Reinforcement Learning
Emilio Parisotto
Soham Ghosh
S. Yalamanchi
Varsha Chinnaobireddy
Yuhuai Wu
Ruslan Salakhutdinov
LRM
138
17
0
07 Mar 2019
NoRML: No-Reward Meta Learning
NoRML: No-Reward Meta LearningAdaptive Agents and Multi-Agent Systems (AAMAS), 2019
Yuxiang Yang
Ken Caluwaerts
Atil Iscen
Jie Tan
Chelsea Finn
151
28
0
04 Mar 2019
ProMP: Proximal Meta-Policy Search
ProMP: Proximal Meta-Policy Search
Jonas Rothfuss
Dennis Lee
I. Clavera
Tamim Asfour
Pieter Abbeel
346
218
0
16 Oct 2018
Fast Context Adaptation via Meta-Learning
Fast Context Adaptation via Meta-Learning
L. Zintgraf
K. Shiarlis
Vitaly Kurin
Katja Hofmann
Shimon Whiteson
357
38
0
08 Oct 2018
Bayesian Transfer Reinforcement Learning with Prior Knowledge Rules
Bayesian Transfer Reinforcement Learning with Prior Knowledge Rules
Michalis K. Titsias
Sotirios Nikoloutsopoulos
BDLOffRL
86
3
0
30 Sep 2018
Unsupervised Meta-Learning for Reinforcement Learning
Unsupervised Meta-Learning for Reinforcement Learning
Abhishek Gupta
Benjamin Eysenbach
Chelsea Finn
Sergey Levine
SSLOffRL
272
110
0
12 Jun 2018
Meta-Reinforcement Learning of Structured Exploration Strategies
Meta-Reinforcement Learning of Structured Exploration Strategies
Abhishek Gupta
Russell Mendonca
YuXuan Liu
Pieter Abbeel
Sergey Levine
OffRL
261
367
0
20 Feb 2018
DiCE: The Infinitely Differentiable Monte-Carlo Estimator
DiCE: The Infinitely Differentiable Monte-Carlo Estimator
Jakob N. Foerster
Gregory Farquhar
Maruan Al-Shedivat
Tim Rocktaschel
Eric Xing
Shimon Whiteson
282
103
0
14 Feb 2018
Evolved Policy Gradients
Evolved Policy Gradients
Rein Houthooft
Richard Y. Chen
Phillip Isola
Bradly C. Stadie
Filip Wolski
Jonathan Ho
Pieter Abbeel
399
235
0
13 Feb 2018
Previous
12