ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.02108
  4. Cited By
HexaConv

HexaConv

6 March 2018
Emiel Hoogeboom
Jorn W. T. Peters
Taco S. Cohen
Max Welling
ArXiv (abs)PDFHTML

Papers citing "HexaConv"

31 / 31 papers shown
Title
Rotation Equivariant Arbitrary-scale Image Super-Resolution
Rotation Equivariant Arbitrary-scale Image Super-ResolutionIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
Qi Xie
J. Fu
Zongben Xu
Deyu Meng
SupR
81
0
0
07 Aug 2025
DUN-SRE: Deep Unrolling Network with Spatiotemporal Rotation Equivariance for Dynamic MRI Reconstruction
DUN-SRE: Deep Unrolling Network with Spatiotemporal Rotation Equivariance for Dynamic MRI ReconstructionIEEE Journal on Selected Topics in Signal Processing (JSTSP), 2025
Yuliang Zhu
Jing Cheng
Qi Xie
Zhuo-Xu Cui
Qingyong Zhu
Yuanyuan Liu
Xin Liu
Jianfeng Ren
Chengbo Wang
Dong Liang
205
0
0
12 Jun 2025
Deep Neural Networks with Efficient Guaranteed Invariances
Deep Neural Networks with Efficient Guaranteed InvariancesInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2023
M. Rath
Alexandru Paul Condurache
119
5
0
02 Mar 2023
Continual Learning for Instruction Following from Realtime Feedback
Continual Learning for Instruction Following from Realtime FeedbackNeural Information Processing Systems (NeurIPS), 2022
Alane Suhr
Yoav Artzi
152
20
0
19 Dec 2022
Energy Reconstruction in Analysis of Cherenkov Telescopes Images in
  TAIGA Experiment Using Deep Learning Methods
Energy Reconstruction in Analysis of Cherenkov Telescopes Images in TAIGA Experiment Using Deep Learning Methods
E. Gres
A. P. Kryukov
69
4
0
16 Nov 2022
Learning Invariant Representations for Equivariant Neural Networks Using
  Orthogonal Moments
Learning Invariant Representations for Equivariant Neural Networks Using Orthogonal MomentsIEEE International Joint Conference on Neural Network (IJCNN), 2022
Jaspreet Singh
Chandan Singh
100
5
0
22 Sep 2022
E2PN: Efficient SE(3)-Equivariant Point Network
E2PN: Efficient SE(3)-Equivariant Point NetworkComputer Vision and Pattern Recognition (CVPR), 2022
Minghan Zhu
Maani Ghaffari
W. A. Clark
Huei Peng
3DPC
147
24
0
11 Jun 2022
The Preliminary Results on Analysis of TAIGA-IACT Images Using
  Convolutional Neural Networks
The Preliminary Results on Analysis of TAIGA-IACT Images Using Convolutional Neural Networks
E. Gres
A. Kryukov
56
3
0
19 Dec 2021
Domain-informed neural networks for interaction localization within
  astroparticle experiments
Domain-informed neural networks for interaction localization within astroparticle experiments
Shixiao Liang
A. Higuera
C. Peters
Venkat Roy
W. Bajwa
H. Shatkay
C. Tunnell
127
7
0
15 Dec 2021
Resampling and super-resolution of hexagonally sampled images using deep
  learning
Resampling and super-resolution of hexagonally sampled images using deep learningOptical Engineering: The Journal of SPIE (Opt. Eng.), 2021
Dylan Flaute
R. Hardie
Hamed Elwarfalli
SupR
117
1
0
03 Nov 2021
Continual Learning for Grounded Instruction Generation by Observing
  Human Following Behavior
Continual Learning for Grounded Instruction Generation by Observing Human Following BehaviorTransactions of the Association for Computational Linguistics (TACL), 2021
Noriyuki Kojima
Alane Suhr
Yoav Artzi
147
26
0
10 Aug 2021
Fourier Series Expansion Based Filter Parametrization for Equivariant
  Convolutions
Fourier Series Expansion Based Filter Parametrization for Equivariant ConvolutionsIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Qi Xie
Qian Zhao
Zongben Xu
Deyu Meng
119
26
0
30 Jul 2021
Group Equivariant Subsampling
Group Equivariant SubsamplingNeural Information Processing Systems (NeurIPS), 2021
Jin Xu
Hyunjik Kim
Tom Rainforth
Yee Whye Teh
93
23
0
10 Jun 2021
Commutative Lie Group VAE for Disentanglement Learning
Commutative Lie Group VAE for Disentanglement LearningInternational Conference on Machine Learning (ICML), 2021
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGeDRL
143
29
0
07 Jun 2021
Geometric Deep Learning and Equivariant Neural Networks
Geometric Deep Learning and Equivariant Neural NetworksArtificial Intelligence Review (AIR), 2021
Jan E. Gerken
J. Aronsson
Oscar Carlsson
Hampus Linander
F. Ohlsson
Christoffer Petersson
Daniel Persson
MLT
190
82
0
28 May 2021
Rule-Based Reinforcement Learning for Efficient Robot Navigation with
  Space Reduction
Rule-Based Reinforcement Learning for Efficient Robot Navigation with Space ReductionIEEE/ASME transactions on mechatronics (IEEE/ASME Trans. Mechatronics), 2021
Yuanyang Zhu
Zhi Wang
Chunlin Chen
D. Dong
89
40
0
15 Apr 2021
A Convolutional Neural Network based Cascade Reconstruction for the
  IceCube Neutrino Observatory
A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory
R. Abbasi
M. Ackermann
J. Adams
J. Aguilar
M. Ahlers
...
Zifei Shan
J. Yáñez
S. Yoshida
T. Yuan
Zheng Zhang
90
54
0
27 Jan 2021
Learning Equivariant Representations
Learning Equivariant Representations
Carlos Esteves
BDL
102
0
0
04 Dec 2020
Equivariant Learning of Stochastic Fields: Gaussian Processes and
  Steerable Conditional Neural Processes
Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural ProcessesInternational Conference on Machine Learning (ICML), 2020
P. Holderrieth
M. Hutchinson
Yee Whye Teh
BDL
170
30
0
25 Nov 2020
Inferring astrophysical X-ray polarization with deep learning
Inferring astrophysical X-ray polarization with deep learning
N. Moriakov
Ashwin Samudre
M. Negro
Fabian Gieseke
Sydney Otten
L. Hendriks
38
3
0
16 May 2020
A Data and Compute Efficient Design for Limited-Resources Deep Learning
A Data and Compute Efficient Design for Limited-Resources Deep Learning
Mirgahney Mohamed
Gabriele Cesa
Taco S. Cohen
Max Welling
MedIm
118
19
0
21 Apr 2020
Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in
  Histology Images
Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in Histology ImagesIEEE Transactions on Medical Imaging (TMI), 2020
S. Graham
David B. A. Epstein
Nasir M. Rajpoot
199
93
0
06 Apr 2020
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphsInternational Conference on Learning Representations (ICLR), 2020
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
293
133
0
11 Mar 2020
Roto-Translation Equivariant Convolutional Networks: Application to
  Histopathology Image Analysis
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
Maxime W. Lafarge
Erik J. Bekkers
J. Pluim
R. Duits
M. Veta
MedIm
198
80
0
20 Feb 2020
Hexagonal Image Processing in the Context of Machine Learning:
  Conception of a Biologically Inspired Hexagonal Deep Learning Framework
Hexagonal Image Processing in the Context of Machine Learning: Conception of a Biologically Inspired Hexagonal Deep Learning FrameworkInternational Conference on Machine Learning and Applications (ICMLA), 2019
Tobias Schlosser
Michael Friedrich
Danny Kowerko
282
15
0
25 Nov 2019
General $E(2)$-Equivariant Steerable CNNs
General E(2)E(2)E(2)-Equivariant Steerable CNNsNeural Information Processing Systems (NeurIPS), 2019
Maurice Weiler
Gabriele Cesa
271
569
0
19 Nov 2019
B-Spline CNNs on Lie Groups
B-Spline CNNs on Lie GroupsInternational Conference on Learning Representations (ICLR), 2019
Erik J. Bekkers
AI4CE
363
142
0
26 Sep 2019
Towards Learning Affine-Invariant Representations via Data-Efficient
  CNNs
Towards Learning Affine-Invariant Representations via Data-Efficient CNNsIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2019
Xenju Xu
Guanghui Wang
Alan Sullivan
Ziming Zhang
107
23
0
31 Aug 2019
Orientation-aware Semantic Segmentation on Icosahedron Spheres
Orientation-aware Semantic Segmentation on Icosahedron SpheresIEEE International Conference on Computer Vision (ICCV), 2019
Chao Zhang
Stephan Liwicki
William A. P. Smith
R. Cipolla
140
85
0
30 Jul 2019
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLTAI4CE
369
333
0
05 Nov 2018
3D Steerable CNNs: Learning Rotationally Equivariant Features in
  Volumetric Data
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric DataNeural Information Processing Systems (NeurIPS), 2018
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
3DPC
225
543
0
06 Jul 2018
1