ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.03544
  4. Cited By
Explaining Black-box Android Malware Detection

Explaining Black-box Android Malware Detection

9 March 2018
Marco Melis
Davide Maiorca
Battista Biggio
Giorgio Giacinto
Fabio Roli
    AAML
    FAtt
ArXivPDFHTML

Papers citing "Explaining Black-box Android Malware Detection"

11 / 11 papers shown
Title
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
85
1,401
0
08 Dec 2017
Evasion Attacks against Machine Learning at Test Time
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
101
2,142
0
21 Aug 2017
Yes, Machine Learning Can Be More Secure! A Case Study on Android
  Malware Detection
Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware Detection
Ambra Demontis
Marco Melis
Battista Biggio
Davide Maiorca
Dan Arp
Konrad Rieck
Igino Corona
Giorgio Giacinto
Fabio Roli
AAML
39
284
0
28 Apr 2017
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
139
2,854
0
14 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
348
3,742
0
28 Feb 2017
European Union regulations on algorithmic decision-making and a "right
  to explanation"
European Union regulations on algorithmic decision-making and a "right to explanation"
B. Goodman
Seth Flaxman
FaML
AILaw
58
1,888
0
28 Jun 2016
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
123
3,672
0
10 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
587
16,828
0
16 Feb 2016
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
176
18,922
0
20 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
185
14,831
1
21 Dec 2013
How to Explain Individual Classification Decisions
How to Explain Individual Classification Decisions
D. Baehrens
T. Schroeter
Stefan Harmeling
M. Kawanabe
K. Hansen
K. Müller
FAtt
111
1,098
0
06 Dec 2009
1