Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.06969
Cited By
Comparing Dynamics: Deep Neural Networks versus Glassy Systems
19 March 2018
M. Baity-Jesi
Levent Sagun
Mario Geiger
S. Spigler
Gerard Ben Arous
C. Cammarota
Yann LeCun
M. Wyart
Giulio Biroli
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Comparing Dynamics: Deep Neural Networks versus Glassy Systems"
50 / 68 papers shown
Title
High-dimensional manifold of solutions in neural networks: insights from statistical physics
Enrico M. Malatesta
46
4
0
20 Feb 2025
Disentangling and Mitigating the Impact of Task Similarity for Continual Learning
Naoki Hiratani
CLL
35
2
0
30 May 2024
From Zero to Hero: How local curvature at artless initial conditions leads away from bad minima
Tony Bonnaire
Giulio Biroli
C. Cammarota
38
0
0
04 Mar 2024
The twin peaks of learning neural networks
Elizaveta Demyanenko
Christoph Feinauer
Enrico M. Malatesta
Luca Saglietti
16
0
0
23 Jan 2024
Temperature Balancing, Layer-wise Weight Analysis, and Neural Network Training
Yefan Zhou
Tianyu Pang
Keqin Liu
Charles H. Martin
Michael W. Mahoney
Yaoqing Yang
34
7
0
01 Dec 2023
On the Impact of Overparameterization on the Training of a Shallow Neural Network in High Dimensions
Simon Martin
Francis Bach
Giulio Biroli
23
9
0
07 Nov 2023
Emergent learning in physical systems as feedback-based aging in a glassy landscape
Vidyesh Rao Anisetti
A. Kandala
J. M. Schwarz
AI4CE
14
4
0
08 Sep 2023
The semantic landscape paradigm for neural networks
Shreyas Gokhale
21
2
0
18 Jul 2023
Black holes and the loss landscape in machine learning
P. Kumar
Taniya Mandal
Swapnamay Mondal
28
2
0
26 Jun 2023
A Three-regime Model of Network Pruning
Yefan Zhou
Yaoqing Yang
Arin Chang
Michael W. Mahoney
29
10
0
28 May 2023
Evolutionary Algorithms in the Light of SGD: Limit Equivalence, Minima Flatness, and Transfer Learning
Andrei Kucharavy
R. Guerraoui
Ljiljana Dolamic
30
1
0
20 May 2023
Typical and atypical solutions in non-convex neural networks with discrete and continuous weights
Carlo Baldassi
Enrico M. Malatesta
Gabriele Perugini
R. Zecchina
MQ
37
11
0
26 Apr 2023
Tradeoff of generalization error in unsupervised learning
Gilhan Kim
Ho-Jun Lee
Junghyo Jo
Yongjoo Baek
13
0
0
10 Mar 2023
Universal characteristics of deep neural network loss surfaces from random matrix theory
Nicholas P. Baskerville
J. Keating
F. Mezzadri
J. Najnudel
Diego Granziol
22
4
0
17 May 2022
Understanding out-of-distribution accuracies through quantifying difficulty of test samples
Berfin Simsek
Melissa Hall
Levent Sagun
23
5
0
28 Mar 2022
Quantifying Relevance in Learning and Inference
M. Marsili
Y. Roudi
6
18
0
01 Feb 2022
Complexity from Adaptive-Symmetries Breaking: Global Minima in the Statistical Mechanics of Deep Neural Networks
Shaun Li
AI4CE
36
0
0
03 Jan 2022
Mode connectivity in the loss landscape of parameterized quantum circuits
Kathleen E. Hamilton
E. Lynn
R. Pooser
25
3
0
09 Nov 2021
Exponentially Many Local Minima in Quantum Neural Networks
Xuchen You
Xiaodi Wu
69
51
0
06 Oct 2021
Learning through atypical "phase transitions" in overparameterized neural networks
Carlo Baldassi
Clarissa Lauditi
Enrico M. Malatesta
R. Pacelli
Gabriele Perugini
R. Zecchina
26
26
0
01 Oct 2021
Edge of chaos as a guiding principle for modern neural network training
Lin Zhang
Ling Feng
Kan Chen
C. Lai
16
9
0
20 Jul 2021
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
31
15
0
19 Jul 2021
Continual Learning in the Teacher-Student Setup: Impact of Task Similarity
Sebastian Lee
Sebastian Goldt
Andrew M. Saxe
CLL
24
73
0
09 Jul 2021
Characterization of Generalizability of Spike Timing Dependent Plasticity trained Spiking Neural Networks
Biswadeep Chakraborty
Saibal Mukhopadhyay
12
15
0
31 May 2021
Ensemble Inference Methods for Models With Noisy and Expensive Likelihoods
Oliver R. A. Dunbar
Andrew B. Duncan
Andrew M. Stuart
Marie-Therese Wolfram
8
26
0
07 Apr 2021
A spin-glass model for the loss surfaces of generative adversarial networks
Nicholas P. Baskerville
J. Keating
F. Mezzadri
J. Najnudel
GAN
28
12
0
07 Jan 2021
Perspective: A Phase Diagram for Deep Learning unifying Jamming, Feature Learning and Lazy Training
Mario Geiger
Leonardo Petrini
M. Wyart
DRL
23
11
0
30 Dec 2020
Statistical Mechanics of Deep Linear Neural Networks: The Back-Propagating Kernel Renormalization
Qianyi Li
H. Sompolinsky
16
69
0
07 Dec 2020
Align, then memorise: the dynamics of learning with feedback alignment
Maria Refinetti
Stéphane dÁscoli
Ruben Ohana
Sebastian Goldt
26
36
0
24 Nov 2020
Anomalous diffusion dynamics of learning in deep neural networks
Guozhang Chen
Chengqing Qu
P. Gong
19
21
0
22 Sep 2020
Low-loss connection of weight vectors: distribution-based approaches
Ivan Anokhin
Dmitry Yarotsky
3DV
17
4
0
03 Aug 2020
Data-driven effective model shows a liquid-like deep learning
Wenxuan Zou
Haiping Huang
24
2
0
16 Jul 2020
Is SGD a Bayesian sampler? Well, almost
Chris Mingard
Guillermo Valle Pérez
Joar Skalse
A. Louis
BDL
13
51
0
26 Jun 2020
The Gaussian equivalence of generative models for learning with shallow neural networks
Sebastian Goldt
Bruno Loureiro
Galen Reeves
Florent Krzakala
M. Mézard
Lenka Zdeborová
BDL
41
100
0
25 Jun 2020
An analytic theory of shallow networks dynamics for hinge loss classification
Franco Pellegrini
Giulio Biroli
24
19
0
19 Jun 2020
Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks
Umut Simsekli
Ozan Sener
George Deligiannidis
Murat A. Erdogdu
41
55
0
16 Jun 2020
Is deeper better? It depends on locality of relevant features
Takashi Mori
Masahito Ueda
OOD
15
4
0
26 May 2020
The Loss Surfaces of Neural Networks with General Activation Functions
Nicholas P. Baskerville
J. Keating
F. Mezzadri
J. Najnudel
ODL
AI4CE
9
26
0
08 Apr 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
14
168
0
19 Dec 2019
Rademacher complexity and spin glasses: A link between the replica and statistical theories of learning
A. Abbara
Benjamin Aubin
Florent Krzakala
Lenka Zdeborová
22
13
0
05 Dec 2019
On the Heavy-Tailed Theory of Stochastic Gradient Descent for Deep Neural Networks
Umut Simsekli
Mert Gurbuzbalaban
T. H. Nguyen
G. Richard
Levent Sagun
15
55
0
29 Nov 2019
Mean-field inference methods for neural networks
Marylou Gabrié
AI4CE
16
33
0
03 Nov 2019
Generalization in multitask deep neural classifiers: a statistical physics approach
Tyler Lee
A. Ndirango
AI4CE
19
20
0
30 Oct 2019
From complex to simple : hierarchical free-energy landscape renormalized in deep neural networks
H. Yoshino
14
6
0
22 Oct 2019
The asymptotic spectrum of the Hessian of DNN throughout training
Arthur Jacot
Franck Gabriel
Clément Hongler
11
35
0
01 Oct 2019
Maximal Relevance and Optimal Learning Machines
O. Duranthon
M. Marsili
R Xie
11
0
0
27 Sep 2019
Weight-space symmetry in deep networks gives rise to permutation saddles, connected by equal-loss valleys across the loss landscape
Johanni Brea
Berfin Simsek
Bernd Illing
W. Gerstner
15
55
0
05 Jul 2019
Disentangling feature and lazy training in deep neural networks
Mario Geiger
S. Spigler
Arthur Jacot
M. Wyart
13
17
0
19 Jun 2019
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup
Sebastian Goldt
Madhu S. Advani
Andrew M. Saxe
Florent Krzakala
Lenka Zdeborová
MLT
19
140
0
18 Jun 2019
Luck Matters: Understanding Training Dynamics of Deep ReLU Networks
Yuandong Tian
Tina Jiang
Qucheng Gong
Ari S. Morcos
11
24
0
31 May 2019
1
2
Next