Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.07517
Cited By
Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges
20 March 2018
Gabrielle Ras
Marcel van Gerven
W. Haselager
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges"
20 / 20 papers shown
Title
Policy-to-Language: Train LLMs to Explain Decisions with Flow-Matching Generated Rewards
Xinyi Yang
Liang Zeng
Heng Dong
C. Yu
X. Wu
H. Yang
Yu Wang
Milind Tambe
Tonghan Wang
68
2
0
18 Feb 2025
Mapping the Potential of Explainable AI for Fairness Along the AI Lifecycle
Luca Deck
Astrid Schomacker
Timo Speith
Jakob Schöffer
Lena Kästner
Niklas Kühl
33
4
0
29 Apr 2024
Less is More: The Influence of Pruning on the Explainability of CNNs
David Weber
F. Merkle
Pascal Schöttle
Stephan Schlögl
Martin Nocker
FAtt
29
1
0
17 Feb 2023
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAI
FAtt
27
18
0
10 Nov 2022
A Fast Attention Network for Joint Intent Detection and Slot Filling on Edge Devices
Liang Huang
Senjie Liang
Feiyang Ye
Nan Gao
48
3
0
16 May 2022
The Need for Ethical, Responsible, and Trustworthy Artificial Intelligence for Environmental Sciences
A. McGovern
I. Ebert‐Uphoff
D. Gagne
A. Bostrom
17
64
0
15 Dec 2021
Model Doctor: A Simple Gradient Aggregation Strategy for Diagnosing and Treating CNN Classifiers
Zunlei Feng
Jiacong Hu
Sai Wu
Xiaotian Yu
Jie Song
Mingli Song
21
13
0
09 Dec 2021
Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities
Waddah Saeed
C. Omlin
XAI
34
414
0
11 Nov 2021
What Can Knowledge Bring to Machine Learning? -- A Survey of Low-shot Learning for Structured Data
Yang Hu
Adriane P. Chapman
Guihua Wen
Dame Wendy Hall
34
24
0
11 Jun 2021
A Review on Explainability in Multimodal Deep Neural Nets
Gargi Joshi
Rahee Walambe
K. Kotecha
16
137
0
17 May 2021
Property Inference Attacks on Convolutional Neural Networks: Influence and Implications of Target Model's Complexity
Mathias Parisot
Balázs Pejó
Dayana Spagnuelo
MIACV
19
33
0
27 Apr 2021
Beyond Expertise and Roles: A Framework to Characterize the Stakeholders of Interpretable Machine Learning and their Needs
Harini Suresh
Steven R. Gomez
K. Nam
Arvind Satyanarayan
34
126
0
24 Jan 2021
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
29
370
0
30 Apr 2020
From Data to Actions in Intelligent Transportation Systems: a Prescription of Functional Requirements for Model Actionability
I. Laña
J. S. Medina
E. Vlahogianni
Javier Del Ser
19
51
0
06 Feb 2020
Transparency and Trust in Human-AI-Interaction: The Role of Model-Agnostic Explanations in Computer Vision-Based Decision Support
Christian Meske
Enrico Bunde
17
7
0
04 Feb 2020
CheXplain: Enabling Physicians to Explore and UnderstandData-Driven, AI-Enabled Medical Imaging Analysis
Yao Xie
Melody Chen
David Kao
Ge Gao
Xiang Ánthony' Chen
23
125
0
15 Jan 2020
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
35
701
0
08 Jan 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
S. Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
11
6,106
0
22 Oct 2019
Interpretable to Whom? A Role-based Model for Analyzing Interpretable Machine Learning Systems
Richard J. Tomsett
Dave Braines
Daniel Harborne
Alun D. Preece
Supriyo Chakraborty
FaML
21
164
0
20 Jun 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,233
0
24 Jun 2017
1