Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.07726
Cited By
v1
v2 (latest)
Gradient Descent with Random Initialization: Fast Global Convergence for Nonconvex Phase Retrieval
21 March 2018
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gradient Descent with Random Initialization: Fast Global Convergence for Nonconvex Phase Retrieval"
50 / 124 papers shown
Title
Euclidean Distance Matrix Completion via Asymmetric Projected Gradient Descent
Yicheng Li
Xinghua Sun
77
0
0
28 Apr 2025
Learning a Class of Mixed Linear Regressions: Global Convergence under General Data Conditions
Yujing Liu
Zhixin Liu
Lei Guo
80
0
0
24 Mar 2025
k
k
k
-SVD with Gradient Descent
Emily Gan
Yassir Jedra
Devavrat Shah
128
0
0
01 Feb 2025
Stability properties of gradient flow dynamics for the symmetric low-rank matrix factorization problem
Hesameddin Mohammadi
Mohammad Tinati
Stephen Tu
Mahdi Soltanolkotabi
M. Jovanović
156
0
0
24 Nov 2024
Sample and Computationally Efficient Robust Learning of Gaussian Single-Index Models
Puqian Wang
Nikos Zarifis
Ilias Diakonikolas
Jelena Diakonikolas
68
1
0
08 Nov 2024
Global convergence of gradient descent for phase retrieval
Théodore Fougereux
Cédric Josz
Xiaopeng Li
68
0
0
13 Oct 2024
In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting
Constantin Philippenko
Kevin Scaman
Laurent Massoulié
FedML
110
1
0
13 Sep 2024
A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval
Adarsh Barik
Anand Krishna
Vincent Y. F. Tan
57
0
0
07 Sep 2024
Smoothed Robust Phase Retrieval
Zhong Zheng
Lingzhou Xue
58
2
0
03 Sep 2024
Non-convex matrix sensing: Breaking the quadratic rank barrier in the sample complexity
Dominik Stoger
Yizhe Zhu
84
2
0
20 Aug 2024
Gradient-based Learning in State-based Potential Games for Self-Learning Production Systems
Steve Yuwono
Marlon Löppenberg
Dorothea Schwung
Andreas Schwung
56
3
0
14 Jun 2024
Tilting the Odds at the Lottery: the Interplay of Overparameterisation and Curricula in Neural Networks
Stefano Sarao Mannelli
Yaraslau Ivashinka
Andrew M. Saxe
Luca Saglietti
67
2
0
03 Jun 2024
Agnostic Learning of Mixed Linear Regressions with EM and AM Algorithms
A. Ghosh
Arya Mazumdar
FedML
59
0
0
03 Jun 2024
Classifying Overlapping Gaussian Mixtures in High Dimensions: From Optimal Classifiers to Neural Nets
Khen Cohen
Noam Levi
Yaron Oz
BDL
74
1
0
28 May 2024
Incorporating Gradients to Rules: Towards Lightweight, Adaptive Provenance-based Intrusion Detection
Lingzhi Wang
Xiangmin Shen
Weijian Li
Zhenyuan Li
R. Sekar
Han Liu
Yan Chen
AAML
66
1
0
23 Apr 2024
Top-
K
K
K
ranking with a monotone adversary
Yuepeng Yang
Antares Chen
Lorenzo Orecchia
Cong Ma
90
1
0
12 Feb 2024
The Local Landscape of Phase Retrieval Under Limited Samples
Kaizhao Liu
Zihao Wang
Lei Wu
55
2
0
26 Nov 2023
Acceleration and Implicit Regularization in Gaussian Phase Retrieval
Tyler Maunu
M. Molina-Fructuoso
82
0
0
21 Nov 2023
EM for Mixture of Linear Regression with Clustered Data
Amirhossein Reisizadeh
Khashayar Gatmiry
Asuman Ozdaglar
FedML
45
1
0
22 Aug 2023
Near Optimal Heteroscedastic Regression with Symbiotic Learning
Dheeraj Baby
Aniket Das
Dheeraj M. Nagaraj
Praneeth Netrapalli
86
3
0
25 Jun 2023
Gradient descent in matrix factorization: Understanding large initialization
Hengchao Chen
Xin Chen
Mohamad Elmasri
Qiang Sun
AI4CE
52
1
0
30 May 2023
Escaping mediocrity: how two-layer networks learn hard generalized linear models with SGD
Luca Arnaboldi
Florent Krzakala
Bruno Loureiro
Ludovic Stephan
MLT
99
5
0
29 May 2023
Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models
Alexandru Damian
Eshaan Nichani
Rong Ge
Jason D. Lee
MLT
96
39
0
18 May 2023
Convergence of Alternating Gradient Descent for Matrix Factorization
R. Ward
T. Kolda
82
9
0
11 May 2023
SGD learning on neural networks: leap complexity and saddle-to-saddle dynamics
Emmanuel Abbe
Enric Boix-Adserà
Theodor Misiakiewicz
FedML
MLT
162
86
0
21 Feb 2023
Sharp analysis of EM for learning mixtures of pairwise differences
A. Dhawan
Cheng Mao
A. Pananjady
60
1
0
20 Feb 2023
Approximate message passing from random initialization with applications to
Z
2
\mathbb{Z}_{2}
Z
2
synchronization
Gen Li
Wei Fan
Yuting Wei
91
12
0
07 Feb 2023
The Power of Preconditioning in Overparameterized Low-Rank Matrix Sensing
Xingyu Xu
Yandi Shen
Yuejie Chi
Cong Ma
122
37
0
02 Feb 2023
Rank-1 Matrix Completion with Gradient Descent and Small Random Initialization
Daesung Kim
Hye Won Chung
86
2
0
19 Dec 2022
Provable Phase Retrieval with Mirror Descent
Jean-Jacques-Narcisse Godeme
M. Fadili
Xavier Buet
M. Zerrad
M. Lequime
C. Amra
57
4
0
17 Oct 2022
From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent
Satyen Kale
Jason D. Lee
Chris De Sa
Ayush Sekhari
Karthik Sridharan
42
4
0
13 Oct 2022
Misspecified Phase Retrieval with Generative Priors
Zhaoqiang Liu
Xinshao Wang
Jiulong Liu
79
6
0
11 Oct 2022
Nonconvex Matrix Factorization is Geodesically Convex: Global Landscape Analysis for Fixed-rank Matrix Optimization From a Riemannian Perspective
Yuetian Luo
Nicolas García Trillos
52
7
0
29 Sep 2022
Sudakov-Fernique post-AMP, and a new proof of the local convexity of the TAP free energy
Michael Celentano
89
21
0
19 Aug 2022
Improved Global Guarantees for the Nonconvex Burer--Monteiro Factorization via Rank Overparameterization
Richard Y. Zhang
106
24
0
05 Jul 2022
Variational Bayesian inference for CP tensor completion with side information
S. Budzinskiy
N. Zamarashkin
47
2
0
24 Jun 2022
Robust Matrix Completion with Heavy-tailed Noise
Bingyan Wang
Jianqing Fan
68
7
0
09 Jun 2022
Model-Based Reinforcement Learning for Offline Zero-Sum Markov Games
Yuling Yan
Gen Li
Yuxin Chen
Jianqing Fan
OffRL
102
11
0
08 Jun 2022
Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
G. Zhang
Salar Fattahi
Richard Y. Zhang
163
24
0
07 Jun 2022
Minimax Optimal Clustering of Bipartite Graphs with a Generalized Power Method
Guillaume Braun
Hemant Tyagi
77
5
0
24 May 2022
Can We Do Better Than Random Start? The Power of Data Outsourcing
Yi Chen
Jing-rong Dong
Xin T. Tong
33
0
0
17 May 2022
Accelerating nuclear-norm regularized low-rank matrix optimization through Burer-Monteiro decomposition
Ching-pei Lee
Ling Liang
Tianyun Tang
Kim-Chuan Toh
92
13
0
29 Apr 2022
Randomly Initialized Alternating Least Squares: Fast Convergence for Matrix Sensing
Kiryung Lee
Dominik Stöger
65
11
0
25 Apr 2022
An Algebraically Converging Stochastic Gradient Descent Algorithm for Global Optimization
Bjorn Engquist
Kui Ren
Yunan Yang
123
6
0
12 Apr 2022
An Oracle Gradient Regularized Newton Method for Quadratic Measurements Regression
Jun Fan
Jie Sun
Ailing Yan
Shenglong Zhou
40
3
0
19 Feb 2022
Learning a Single Neuron for Non-monotonic Activation Functions
Lei Wu
MLT
60
11
0
16 Feb 2022
Towards Statistical and Computational Complexities of Polyak Step Size Gradient Descent
Zhaolin Ren
Fuheng Cui
Alexia Atsidakou
Sujay Sanghavi
Nhat Ho
31
6
0
15 Oct 2021
Tensor train completion: local recovery guarantees via Riemannian optimization
S. Budzinskiy
N. Zamarashkin
103
15
0
08 Oct 2021
Inference for Heteroskedastic PCA with Missing Data
Yuling Yan
Yuxin Chen
Jianqing Fan
122
19
0
26 Jul 2021
Towards Sample-Optimal Compressive Phase Retrieval with Sparse and Generative Priors
Zhaoqiang Liu
Subhro Ghosh
Jonathan Scarlett
47
18
0
29 Jun 2021
1
2
3
Next