Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.07726
Cited By
v1
v2 (latest)
Gradient Descent with Random Initialization: Fast Global Convergence for Nonconvex Phase Retrieval
21 March 2018
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gradient Descent with Random Initialization: Fast Global Convergence for Nonconvex Phase Retrieval"
50 / 124 papers shown
Title
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
80
78
0
28 Jun 2021
Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix Factorization
Tian-Chun Ye
S. Du
66
48
0
27 Jun 2021
On the Cryptographic Hardness of Learning Single Periodic Neurons
M. Song
Ilias Zadik
Joan Bruna
AAML
65
28
0
20 Jun 2021
Submodular + Concave
Siddharth Mitra
Moran Feldman
Amin Karbasi
35
19
0
09 Jun 2021
Escaping Saddle Points Faster with Stochastic Momentum
Jun-Kun Wang
Chi-Heng Lin
Jacob D. Abernethy
ODL
77
22
0
05 Jun 2021
Bandit Phase Retrieval
Tor Lattimore
Botao Hao
84
13
0
03 Jun 2021
Lecture notes on non-convex algorithms for low-rank matrix recovery
Irène Waldspurger
58
1
0
21 May 2021
Nonparametric Modeling of Higher-Order Interactions via Hypergraphons
Krishnakumar Balasubramanian
59
12
0
18 May 2021
Sample Efficient Linear Meta-Learning by Alternating Minimization
K. K. Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
55
23
0
18 May 2021
Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation from Incomplete Measurements
Tian Tong
Cong Ma
Ashley Prater-Bennette
Erin E. Tripp
Yuejie Chi
108
33
0
29 Apr 2021
Low-rank Tensor Estimation via Riemannian Gauss-Newton: Statistical Optimality and Second-Order Convergence
Yuetian Luo
Anru R. Zhang
157
20
0
24 Apr 2021
Efficient Sparse Coding using Hierarchical Riemannian Pursuit
Ye Xue
Vincent K. N. Lau
Songfu Cai
152
3
0
21 Apr 2021
Stochasticity helps to navigate rough landscapes: comparing gradient-descent-based algorithms in the phase retrieval problem
Francesca Mignacco
Pierfrancesco Urbani
Lenka Zdeborová
83
36
0
08 Mar 2021
Beyond Procrustes: Balancing-Free Gradient Descent for Asymmetric Low-Rank Matrix Sensing
Cong Ma
Yuanxin Li
Yuejie Chi
48
3
0
13 Jan 2021
Fast Global Convergence for Low-rank Matrix Recovery via Riemannian Gradient Descent with Random Initialization
T. Hou
Zhenzhen Li
Ziyun Zhang
72
18
0
31 Dec 2020
Stochastic Approximation for Online Tensorial Independent Component Analysis
C. J. Li
Michael I. Jordan
59
2
0
28 Dec 2020
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
153
173
0
15 Dec 2020
Recent Theoretical Advances in Non-Convex Optimization
Marina Danilova
Pavel Dvurechensky
Alexander Gasnikov
Eduard A. Gorbunov
Sergey Guminov
Dmitry Kamzolov
Innokentiy Shibaev
129
79
0
11 Dec 2020
Optimal Sample Complexity of Subgradient Descent for Amplitude Flow via Non-Lipschitz Matrix Concentration
Paul Hand
Oscar Leong
V. Voroninski
39
1
0
31 Oct 2020
Low-Rank Matrix Recovery with Scaled Subgradient Methods: Fast and Robust Convergence Without the Condition Number
Tian Tong
Cong Ma
Yuejie Chi
105
56
0
26 Oct 2020
Understanding How Over-Parametrization Leads to Acceleration: A case of learning a single teacher neuron
Jun-Kun Wang
Jacob D. Abernethy
16
1
0
04 Oct 2020
Quickly Finding a Benign Region via Heavy Ball Momentum in Non-Convex Optimization
Jun-Kun Wang
Jacob D. Abernethy
108
7
0
04 Oct 2020
Learning Mixtures of Low-Rank Models
Yanxi Chen
Cong Ma
H. Vincent Poor
Yuxin Chen
57
13
0
23 Sep 2020
Understanding and Detecting Convergence for Stochastic Gradient Descent with Momentum
Jerry Chee
Ping Li
43
12
0
27 Aug 2020
Convex and Nonconvex Optimization Are Both Minimax-Optimal for Noisy Blind Deconvolution under Random Designs
Yuxin Chen
Jianqing Fan
B. Wang
Yuling Yan
90
16
0
04 Aug 2020
From Symmetry to Geometry: Tractable Nonconvex Problems
Yuqian Zhang
Qing Qu
John N. Wright
87
45
0
14 Jul 2020
Differentiable Programming for Hyperspectral Unmixing using a Physics-based Dispersion Model
J. Janiczek
Parth Thaker
Gautam Dasarathy
C. Edwards
P. Christensen
Suren Jayasuriya
139
3
0
12 Jul 2020
Optimization and Generalization of Shallow Neural Networks with Quadratic Activation Functions
Stefano Sarao Mannelli
Eric Vanden-Eijnden
Lenka Zdeborová
AI4CE
67
49
0
27 Jun 2020
Uncertainty quantification for nonconvex tensor completion: Confidence intervals, heteroscedasticity and optimality
Changxiao Cai
H. Vincent Poor
Yuxin Chen
118
23
0
15 Jun 2020
Complex Dynamics in Simple Neural Networks: Understanding Gradient Flow in Phase Retrieval
Stefano Sarao Mannelli
Giulio Biroli
C. Cammarota
Florent Krzakala
Pierfrancesco Urbani
Lenka Zdeborová
53
28
0
12 Jun 2020
Homomorphic Sensing of Subspace Arrangements
Liangzu Peng
M. Tsakiris
47
13
0
09 Jun 2020
Exit Time Analysis for Approximations of Gradient Descent Trajectories Around Saddle Points
Rishabh Dixit
Mert Gurbuzbalaban
W. Bajwa
41
3
0
01 Jun 2020
Hadamard Wirtinger Flow for Sparse Phase Retrieval
Fan Wu
Patrick Rebeschini
79
18
0
01 Jun 2020
Instability, Computational Efficiency and Statistical Accuracy
Nhat Ho
K. Khamaru
Raaz Dwivedi
Martin J. Wainwright
Michael I. Jordan
Bin Yu
70
20
0
22 May 2020
Online stochastic gradient descent on non-convex losses from high-dimensional inference
Gerard Ben Arous
Reza Gheissari
Aukosh Jagannath
88
91
0
23 Mar 2020
Complete Dictionary Learning via
ℓ
p
\ell_p
ℓ
p
-norm Maximization
Yifei Shen
Ye Xue
Jun Zhang
Khaled B. Letaief
Vincent K. N. Lau
66
15
0
24 Feb 2020
On the Sample Complexity and Optimization Landscape for Quadratic Feasibility Problems
Parth Thaker
Gautam Dasarathy
Angelia Nedić
46
5
0
04 Feb 2020
Consensus-Based Optimization on Hypersurfaces: Well-Posedness and Mean-Field Limit
M. Fornasier
Hui-Lin Huang
L. Pareschi
Philippe Sünnen
82
56
0
31 Jan 2020
Consensus-Based Optimization on the Sphere: Convergence to Global Minimizers and Machine Learning
M. Fornasier
Hui Huang
L. Pareschi
Philippe Sünnen
129
69
0
31 Jan 2020
Bridging Convex and Nonconvex Optimization in Robust PCA: Noise, Outliers, and Missing Data
Yuxin Chen
Jianqing Fan
Cong Ma
Yuling Yan
89
52
0
15 Jan 2020
Multicategory Angle-based Learning for Estimating Optimal Dynamic Treatment Regimes with Censored Data
F. Xue
Yanqing Zhang
Wenzhuo Zhou
H. Fu
Annie Qu
55
15
0
14 Jan 2020
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
81
20
0
31 Dec 2019
Manifold Gradient Descent Solves Multi-Channel Sparse Blind Deconvolution Provably and Efficiently
Laixi Shi
Yuejie Chi
86
26
0
25 Nov 2019
Nonconvex Low-Rank Tensor Completion from Noisy Data
Changxiao Cai
Gen Li
H. Vincent Poor
Yuxin Chen
145
82
0
11 Nov 2019
Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
Yan Shuo Tan
Roman Vershynin
79
35
0
28 Oct 2019
Subspace Estimation from Unbalanced and Incomplete Data Matrices:
ℓ
2
,
∞
\ell_{2,\infty}
ℓ
2
,
∞
Statistical Guarantees
Changxiao Cai
Gen Li
Yuejie Chi
H. Vincent Poor
Yuxin Chen
102
13
0
09 Oct 2019
Statistical Analysis of Stationary Solutions of Coupled Nonconvex Nonsmooth Empirical Risk Minimization
Zhengling Qi
Ying Cui
Yufeng Liu
J. Pang
92
5
0
06 Oct 2019
Randomly initialized EM algorithm for two-component Gaussian mixture achieves near optimality in
O
(
n
)
O(\sqrt{n})
O
(
n
)
iterations
Yihong Wu
Harrison H. Zhou
275
43
0
28 Aug 2019
A Nonconvex Approach for Exact and Efficient Multichannel Sparse Blind Deconvolution
Qing Qu
Xiao Li
Zhihui Zhu
103
31
0
28 Aug 2019
Distributed Global Optimization by Annealing
Brian Swenson
S. Kar
H. Vincent Poor
José M. F. Moura
101
3
0
20 Jul 2019
Previous
1
2
3
Next