ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.00104
  4. Cited By
Learning Disentangled Joint Continuous and Discrete Representations
v1v2v3 (latest)

Learning Disentangled Joint Continuous and Discrete Representations

31 March 2018
Emilien Dupont
    DRL
ArXiv (abs)PDFHTML

Papers citing "Learning Disentangled Joint Continuous and Discrete Representations"

50 / 129 papers shown
Title
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
312
124
0
04 Oct 2021
Designing Complex Experiments by Applying Unsupervised Machine Learning
Designing Complex Experiments by Applying Unsupervised Machine Learning
A. Glushkovsky
167
1
0
29 Sep 2021
Disentangling Generative Factors in Natural Language with Discrete
  Variational Autoencoders
Disentangling Generative Factors in Natural Language with Discrete Variational Autoencoders
Giangiacomo Mercatali
André Freitas
CoGeDRL
135
27
0
15 Sep 2021
Disentanglement Analysis with Partial Information Decomposition
Disentanglement Analysis with Partial Information DecompositionInternational Conference on Learning Representations (ICLR), 2021
Seiya Tokui
Issei Sato
CoGeDRL
173
15
0
31 Aug 2021
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in
  Image Generation
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation
Yuxiang Wei
Yupeng Shi
Xiao-Chang Liu
Zhilong Ji
Yuan Gao
Zhongqin Wu
W. Zuo
143
57
0
17 Aug 2021
Disentangling Hate in Online Memes
Disentangling Hate in Online MemesACM Multimedia (ACM MM), 2021
Rui Cao
Ziqing Fan
Roy Ka-wei Lee
Wen-Haw Chong
Jing Jiang
170
98
0
09 Aug 2021
Unsupervised Learning of Neurosymbolic Encoders
Unsupervised Learning of Neurosymbolic Encoders
Eric Zhan
Jennifer J. Sun
Ann Kennedy
Yisong Yue
Swarat Chaudhuri
195
15
0
28 Jul 2021
Improving ClusterGAN Using Self-Augmented Information Maximization of
  Disentangling Latent Spaces
Improving ClusterGAN Using Self-Augmented Information Maximization of Disentangling Latent Spaces
T. Dam
S. Anavatti
H. Abbass
159
6
0
27 Jul 2021
Improving Robot Localisation by Ignoring Visual Distraction
Improving Robot Localisation by Ignoring Visual DistractionIEEE/RJS International Conference on Intelligent RObots and Systems (IROS), 2021
Oscar Alejandro Mendez Maldonado
M. Vowels
Richard Bowden
76
3
0
25 Jul 2021
Motion Planning by Learning the Solution Manifold in Trajectory
  Optimization
Motion Planning by Learning the Solution Manifold in Trajectory Optimization
Takayuki Osa
125
25
0
13 Jul 2021
InfoVAEGAN : learning joint interpretable representations by information
  maximization and maximum likelihood
InfoVAEGAN : learning joint interpretable representations by information maximization and maximum likelihoodInternational Conference on Information Photonics (ICIP), 2021
Fei Ye
A. Bors
GANDRL
118
16
0
09 Jul 2021
Lifelong Mixture of Variational Autoencoders
Lifelong Mixture of Variational AutoencodersIEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2021
Fei Ye
A. Bors
DRL
103
32
0
09 Jul 2021
Multi-VAE: Learning Disentangled View-common and View-peculiar Visual Representations for Multi-view ClusteringIEEE International Conference on Computer Vision (ICCV), 2021
Jie Xu
Yazhou Ren
Huayi Tang
X. Pu
Xiaofeng Zhu
Ming Zeng
Lifang He
DRL
172
142
0
21 Jun 2021
Commutative Lie Group VAE for Disentanglement Learning
Commutative Lie Group VAE for Disentanglement LearningInternational Conference on Machine Learning (ICML), 2021
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGeDRL
175
31
0
07 Jun 2021
Discover the Unknown Biased Attribute of an Image Classifier
Discover the Unknown Biased Attribute of an Image ClassifierIEEE International Conference on Computer Vision (ICCV), 2021
Zhiheng Li
Chenliang Xu
169
54
0
29 Apr 2021
Where and What? Examining Interpretable Disentangled Representations
Where and What? Examining Interpretable Disentangled RepresentationsComputer Vision and Pattern Recognition (CVPR), 2021
Xinqi Zhu
Chang Xu
Dacheng Tao
FAttDRL
181
43
0
07 Apr 2021
SKID RAW: Skill Discovery from Raw Trajectories
SKID RAW: Skill Discovery from Raw TrajectoriesIEEE Robotics and Automation Letters (RA-L), 2021
Daniel Tanneberg
Kai Ploeger
Elmar Rueckert
Jan Peters
163
33
0
26 Mar 2021
Raven's Progressive Matrices Completion with Latent Gaussian Process
  Priors
Raven's Progressive Matrices Completion with Latent Gaussian Process PriorsAAAI Conference on Artificial Intelligence (AAAI), 2021
Fan Shi
Bin Li
Xiangyang Xue
LRM
226
10
0
22 Mar 2021
Discovering Diverse Solutions in Deep Reinforcement Learning by
  Maximizing State-Action-Based Mutual Information
Discovering Diverse Solutions in Deep Reinforcement Learning by Maximizing State-Action-Based Mutual InformationNeural Networks (NN), 2021
Takayuki Osa
Voot Tangkaratt
Masashi Sugiyama
250
35
0
12 Mar 2021
Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement
Benchmarks, Algorithms, and Metrics for Hierarchical DisentanglementInternational Conference on Machine Learning (ICML), 2021
A. Ross
Finale Doshi-Velez
DRL
294
14
0
09 Feb 2021
DEFT: Distilling Entangled Factors by Preventing Information Diffusion
DEFT: Distilling Entangled Factors by Preventing Information DiffusionMachine-mediated learning (ML), 2021
Jiantao Wu
Lin Wang
Bo Yang
Fanqi Li
Chunxiuzi Liu
Jin Zhou
120
2
0
08 Feb 2021
Semi-Supervised Disentanglement of Class-Related and Class-Independent
  Factors in VAE
Semi-Supervised Disentanglement of Class-Related and Class-Independent Factors in VAE
Sina Hajimiri
Aryo Lotfi
M. Baghshah
DRL
74
9
0
01 Feb 2021
Variational Nested Dropout
Variational Nested DropoutIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Yufei Cui
Yushun Mao
Ziquan Liu
Qiao Li
Antoni B. Chan
Xue Liu
Tei-Wei Kuo
Chun Jason Xue
BDL
106
5
0
27 Jan 2021
Disentangled Sequence Clustering for Human Intention Inference
Disentangled Sequence Clustering for Human Intention InferenceIEEE/RJS International Conference on Intelligent RObots and Systems (IROS), 2021
Mark Zolotas
Y. Demiris
DRL
300
5
0
23 Jan 2021
Disentangled Recurrent Wasserstein Autoencoder
Disentangled Recurrent Wasserstein AutoencoderInternational Conference on Learning Representations (ICLR), 2021
Jun Han
Martin Renqiang Min
Ligong Han
Erran L. Li
Xuan Zhang
CoGeSyDaDRL
156
36
0
19 Jan 2021
Private-Shared Disentangled Multimodal VAE for Learning of Hybrid Latent
  Representations
Private-Shared Disentangled Multimodal VAE for Learning of Hybrid Latent Representations
Mihee Lee
Vladimir Pavlovic
DRL
107
16
0
23 Dec 2020
Disentangling images with Lie group transformations and sparse coding
Disentangling images with Lie group transformations and sparse coding
Ho Yin Chau
Frank Qiu
Yubei Chen
Bruno A. Olshausen
111
13
0
11 Dec 2020
Generating Out of Distribution Adversarial Attack using Latent Space
  Poisoning
Generating Out of Distribution Adversarial Attack using Latent Space PoisoningIEEE Signal Processing Letters (IEEE SPL), 2020
Ujjwal Upadhyay
Prerana Mukherjee
256
8
0
09 Dec 2020
Generating private data with user customization
Generating private data with user customization
Xiao Chen
Thomas Navidi
Ram Rajagopal
129
2
0
02 Dec 2020
AI Discovering a Coordinate System of Chemical Elements: Dual Representation by Variational Autoencoders
AI Discovering a Coordinate System of Chemical Elements: Dual Representation by Variational Autoencoders
A. Glushkovsky
DRL
525
6
0
24 Nov 2020
SHOT-VAE: Semi-supervised Deep Generative Models With Label-aware ELBO
  Approximations
SHOT-VAE: Semi-supervised Deep Generative Models With Label-aware ELBO ApproximationsAAAI Conference on Artificial Intelligence (AAAI), 2020
Hao Feng
Kezhi Kong
Minghao Chen
Tianye Zhang
Minfeng Zhu
Wei Chen
VLMDRL
364
26
0
21 Nov 2020
Human-interpretable model explainability on high-dimensional data
Human-interpretable model explainability on high-dimensional data
Damien de Mijolla
Christopher Frye
M. Kunesch
J. Mansir
Ilya Feige
FAtt
133
12
0
14 Oct 2020
Discond-VAE: Disentangling Continuous Factors from the Discrete
Discond-VAE: Disentangling Continuous Factors from the Discrete
Jaewoong Choi
Geonho Hwang
Myung-joo Kang
CoGeCML
157
6
0
17 Sep 2020
Learning Disentangled Representations with Latent Variation
  Predictability
Learning Disentangled Representations with Latent Variation PredictabilityEuropean Conference on Computer Vision (ECCV), 2020
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGeDRL
148
27
0
25 Jul 2020
Learning the Solution Manifold in Optimization and Its Application in
  Motion Planning
Learning the Solution Manifold in Optimization and Its Application in Motion Planning
Takayuki Osa
117
2
0
24 Jul 2020
Learning latent representations across multiple data domains using
  Lifelong VAEGAN
Learning latent representations across multiple data domains using Lifelong VAEGAN
Fei Ye
A. Bors
SyDaCLL
148
78
0
20 Jul 2020
Mixture Representation Learning with Coupled Autoencoders
Mixture Representation Learning with Coupled Autoencoders
Yeganeh M. Marghi
Rohan Gala
U. Sümbül
BDL
123
0
0
20 Jul 2020
Disentangling by Subspace Diffusion
Disentangling by Subspace DiffusionNeural Information Processing Systems (NeurIPS), 2020
David Pfau
I. Higgins
Aleksandar Botev
S. Racanière
DiffMDRL
228
39
0
23 Jun 2020
Capturing Label Characteristics in VAEs
Capturing Label Characteristics in VAEs
Thomas Joy
Sebastian M. Schmon
Juil Sock
N. Siddharth
Tom Rainforth
CMLDRL
325
51
0
17 Jun 2020
Disentangled Representation Learning and Generation with Manifold
  Optimization
Disentangled Representation Learning and Generation with Manifold OptimizationNeural Computation (Neural Comput.), 2020
Arun Pandey
Michaël Fanuel
J. Schreurs
Johan A. K. Suykens
CoGeDRL
115
28
0
12 Jun 2020
VMI-VAE: Variational Mutual Information Maximization Framework for VAE
  With Discrete and Continuous Priors
VMI-VAE: Variational Mutual Information Maximization Framework for VAE With Discrete and Continuous Priors
Andriy Serdega
Dae-Shik Kim
DRL
107
4
0
28 May 2020
Semi-supervised Neural Chord Estimation Based on a Variational
  Autoencoder with Latent Chord Labels and Features
Semi-supervised Neural Chord Estimation Based on a Variational Autoencoder with Latent Chord Labels and Features
Yiming Wu
Tristan Carsault
Eita Nakamura
Kazuyoshi Yoshii
DRL
159
3
0
14 May 2020
Disassembling Object Representations without Labels
Disassembling Object Representations without LabelsNeurocomputing (Neurocomputing), 2020
Zunlei Feng
Xinchao Wang
Yongming He
Yike Yuan
Xin Gao
Xiuming Zhang
OCL
175
0
0
03 Apr 2020
Guided Variational Autoencoder for Disentanglement Learning
Guided Variational Autoencoder for Disentanglement LearningComputer Vision and Pattern Recognition (CVPR), 2020
Zheng Ding
Yifan Xu
Weijian Xu
Gaurav Parmar
Yang Yang
Max Welling
Zhuowen Tu
DRLCoGe
157
120
0
02 Apr 2020
Semi-supervised Disentanglement with Independent Vector Variational
  Autoencoders
Semi-supervised Disentanglement with Independent Vector Variational Autoencoders
Bo-Kyeong Kim
Sungjin Park
Geon-min Kim
Soo-Young Lee
CMLDRL
101
3
0
14 Mar 2020
Toward a Controllable Disentanglement Network
Toward a Controllable Disentanglement Network
Zengjie Song
Oluwasanmi Koyejo
Jiangshe Zhang
DRL
118
3
0
22 Jan 2020
Disentanglement by Nonlinear ICA with General Incompressible-flow
  Networks (GIN)
Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)International Conference on Learning Representations (ICLR), 2020
Peter Sorrenson
Carsten Rother
Ullrich Kothe
DRLCML
169
125
0
14 Jan 2020
Adversarial Disentanglement with Grouped Observations
Adversarial Disentanglement with Grouped ObservationsAAAI Conference on Artificial Intelligence (AAAI), 2020
J. Németh
DRL
103
8
0
14 Jan 2020
Disentangled Representation Learning with Wasserstein Total Correlation
Disentangled Representation Learning with Wasserstein Total Correlation
Yijun Xiao
William Yang Wang
OODDRL
117
14
0
30 Dec 2019
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-SoftmaxNeural Information Processing Systems (NeurIPS), 2019
Andres Potapczynski
Gabriel Loaiza-Ganem
John P. Cunningham
204
38
0
19 Dec 2019
Previous
123
Next