ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.00104
  4. Cited By
Learning Disentangled Joint Continuous and Discrete Representations
v1v2v3 (latest)

Learning Disentangled Joint Continuous and Discrete Representations

31 March 2018
Emilien Dupont
    DRL
ArXiv (abs)PDFHTML

Papers citing "Learning Disentangled Joint Continuous and Discrete Representations"

50 / 129 papers shown
Title
Disentanglement of Sources in a Multi-Stream Variational Autoencoder
Disentanglement of Sources in a Multi-Stream Variational Autoencoder
Veranika Boukun
Jörg Lücke
DRLCoGe
193
0
0
17 Oct 2025
Disentangling Score Content and Performance Style for Joint Piano Rendering and Transcription
Disentangling Score Content and Performance Style for Joint Piano Rendering and Transcription
Wei Zeng
Junchuan Zhao
Ye Wang
72
0
0
28 Sep 2025
LatentGuard: Controllable Latent Steering for Robust Refusal of Attacks and Reliable Response Generation
LatentGuard: Controllable Latent Steering for Robust Refusal of Attacks and Reliable Response Generation
Huizhen Shu
Xuying Li
Zhuo Li
LLMSV
120
0
0
24 Sep 2025
Negative Binomial Variational Autoencoders for Overdispersed Latent Modeling
Negative Binomial Variational Autoencoders for Overdispersed Latent Modeling
Yixuan Zhang
Wenxin Zhang
Hua Jiang
Quyu Kong
Feng Zhou
56
0
0
07 Aug 2025
Enhancing Transferability and Consistency in Cross-Domain Recommendations via Supervised Disentanglement
Enhancing Transferability and Consistency in Cross-Domain Recommendations via Supervised DisentanglementACM Conference on Recommender Systems (RecSys), 2025
Y. Wang
Qing Xie
Zhifeng Bao
Mengzi Tang
Lin Li
Yongjian Liu
110
1
0
23 Jul 2025
Modular Machine Learning: An Indispensable Path towards New-Generation Large Language Models
Modular Machine Learning: An Indispensable Path towards New-Generation Large Language Models
X. Wang
Haoyang Li
Zeyang Zhang
Zeyang Zhang
Wenwu Zhu
LRM
309
1
0
28 Apr 2025
Dual Consistent Constraint via Disentangled Consistency and Complementarity for Multi-view Clustering
Dual Consistent Constraint via Disentangled Consistency and Complementarity for Multi-view Clustering
Bo Li
Jing Yun
211
1
0
07 Apr 2025
Bird Vocalization Embedding Extraction Using Self-Supervised Disentangled Representation Learning
Bird Vocalization Embedding Extraction Using Self-Supervised Disentangled Representation Learning
Runwu Shi
Katsutoshi Itoyama
K. Nakadai
SSLDRL
244
1
0
31 Dec 2024
Alternatives of Unsupervised Representations of Variables on the Latent
  Space
Alternatives of Unsupervised Representations of Variables on the Latent Space
Alex Glushkovsky
SSLBDLDRL
147
0
0
26 Oct 2024
Deep Concept Identification for Generative Design
Deep Concept Identification for Generative DesignAdvanced Engineering Informatics (AEI), 2024
Ryo Tsumoto
Kentaro Yaji
Yutaka Nomaguchi
K. Fujita
70
1
0
26 Oct 2024
Unsupervised Representation Learning from Sparse Transformation Analysis
Unsupervised Representation Learning from Sparse Transformation Analysis
Yue Song
Thomas Anderson Keller
Yisong Yue
Pietro Perona
Max Welling
DRL
250
2
0
07 Oct 2024
Rethinking Disentanglement under Dependent Factors of Variation
Rethinking Disentanglement under Dependent Factors of Variation
Antonio Almudévar
Alfonso Ortega
DRLCoGe
270
1
0
13 Aug 2024
PECAN: Personalizing Robot Behaviors through a Learned Canonical Space
PECAN: Personalizing Robot Behaviors through a Learned Canonical Space
Heramb Nemlekar
Robert Ramirez Sanchez
Dylan P. Losey
307
4
0
22 Jul 2024
Uniform Transformation: Refining Latent Representation in Variational
  Autoencoders
Uniform Transformation: Refining Latent Representation in Variational Autoencoders
Ye Shi
C. S. G. Lee
OODDRL
201
0
0
02 Jul 2024
Disentangling Hippocampal Shape Variations: A Study of Neurological
  Disorders Using Graph Variational Autoencoder with Contrastive Learning
Disentangling Hippocampal Shape Variations: A Study of Neurological Disorders Using Graph Variational Autoencoder with Contrastive Learning
Jakaria Rabbi
Johannes Kiechle
Christian Beaulieu
Nilanjan Ray
Dana Cobzas
192
0
0
31 Mar 2024
Rethinking Multi-view Representation Learning via Distilled
  Disentangling
Rethinking Multi-view Representation Learning via Distilled Disentangling
Guanzhou Ke
Bo Wang
Xiaoli Wang
Shengfeng He
337
20
0
16 Mar 2024
Autoencoder-based General Purpose Representation Learning for Customer Embedding
Autoencoder-based General Purpose Representation Learning for Customer Embedding
Jan Henrik Bertrand
J. P. Gargano
Laurent Mombaerts
Jonathan Taws
Jonathan Taws
OOD
157
0
0
28 Feb 2024
Closed-Loop Unsupervised Representation Disentanglement with $β$-VAE Distillation and Diffusion Probabilistic Feedback
Closed-Loop Unsupervised Representation Disentanglement with βββ-VAE Distillation and Diffusion Probabilistic Feedback
Xin Jin
Bo Li
Baao Xie
Wenyao Zhang
Jinming Liu
Ziqiang Li
Tao Yang
Wenjun Zeng
DRLDiffMCoGe
337
11
0
04 Feb 2024
Disentangling continuous and discrete linguistic signals in
  transformer-based sentence embeddings
Disentangling continuous and discrete linguistic signals in transformer-based sentence embeddings
Vivi Nastase
Paola Merlo
170
0
0
18 Dec 2023
Position Paper on Materials Design -- A Modern Approach
Position Paper on Materials Design -- A Modern Approach
Willi Großmann
Sebastian Eilermann
Tim Rensmeyer
Artur Liebert
Michael Hohmann
Christian Wittke
Oliver Niggemann
152
2
0
18 Dec 2023
Multi-Agent Reinforcement Learning Based on Representational
  Communication for Large-Scale Traffic Signal Control
Multi-Agent Reinforcement Learning Based on Representational Communication for Large-Scale Traffic Signal ControlIEEE Access (IEEE Access), 2023
Rohit Bokade
Xiaoning Jin
Chris Amato
212
20
0
03 Oct 2023
Flow Factorized Representation Learning
Flow Factorized Representation LearningNeural Information Processing Systems (NeurIPS), 2023
Yue Song
Thomas Anderson Keller
Andrii Zadaianchuk
Max Welling
DRLOOD
294
5
0
22 Sep 2023
Learning Disentangled Discrete Representations
Learning Disentangled Discrete Representations
David Friede
Christian Reimers
Heiner Stuckenschmidt
Mathias Niepert
CoGeOCLOODDRL
160
0
0
26 Jul 2023
Triggering Dark Showers with Conditional Dual Auto-Encoders
Triggering Dark Showers with Conditional Dual Auto-Encoders
Luca Anzalone
S. S. Chhibra
B. Maier
N. Chernyavskaya
M. Pierini
AI4CE
137
4
0
22 Jun 2023
Contrastive Representation Disentanglement for Clustering
Contrastive Representation Disentanglement for Clustering
Fei Ding
Dan Zhang
Yin Yang
Venkat Krovi
Feng Luo
SSLDRL
171
0
0
08 Jun 2023
Latent Traversals in Generative Models as Potential Flows
Latent Traversals in Generative Models as Potential FlowsInternational Conference on Machine Learning (ICML), 2023
Yue Song
Andy Keller
Andrii Zadaianchuk
Max Welling
DRL
302
15
0
25 Apr 2023
Causal Disentangled Variational Auto-Encoder for Preference
  Understanding in Recommendation
Causal Disentangled Variational Auto-Encoder for Preference Understanding in RecommendationAnnual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2023
Siyu Wang
Xiaocong Chen
Quan.Z Sheng
Yihong Zhang
Lina Yao
CML
124
19
0
17 Apr 2023
Variantional autoencoder with decremental information bottleneck for
  disentanglement
Variantional autoencoder with decremental information bottleneck for disentanglementBritish Machine Vision Conference (BMVC), 2023
Jiantao Wu
Shentong Mo
Xiang Yang
Muhammad Awais
Sara Atito
Xingshen Zhang
Lin Wang
Xiang Yang
DRL
101
1
0
22 Mar 2023
Causally Disentangled Generative Variational AutoEncoder
Causally Disentangled Generative Variational AutoEncoderEuropean Conference on Artificial Intelligence (ECAI), 2023
SeungHwan An
Kyungwoo Song
Jong-June Jeon
OODCoGeDRLCML
153
7
0
23 Feb 2023
Autocodificadores Variacionales (VAE) Fundamentos Teóricos y
  Aplicaciones
Autocodificadores Variacionales (VAE) Fundamentos Teóricos y Aplicaciones
J. D. L. Torre
DRL
131
2
0
18 Feb 2023
Learning State Transition Rules from Hidden Layers of Restricted
  Boltzmann Machines
Learning State Transition Rules from Hidden Layers of Restricted Boltzmann Machines
Koji Watanabe
Katsumi Inoue
AI4CE
116
1
0
07 Dec 2022
Disentangled Representation Learning
Disentangled Representation LearningIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Xin Eric Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
472
146
0
21 Nov 2022
CNeRV: Content-adaptive Neural Representation for Visual Data
CNeRV: Content-adaptive Neural Representation for Visual DataBritish Machine Vision Conference (BMVC), 2022
Hao Chen
M. Gwilliam
Bo He
Ser-Nam Lim
Abhinav Shrivastava
122
33
1
18 Nov 2022
DOT-VAE: Disentangling One Factor at a Time
DOT-VAE: Disentangling One Factor at a TimeInternational Conference on Artificial Neural Networks (ICANN), 2022
Vaishnavi Patil
Matthew Evanusa
Joseph Jaja
CoGeDRLCML
177
1
0
19 Oct 2022
Break The Spell Of Total Correlation In betaTCVAE
Break The Spell Of Total Correlation In betaTCVAE
Zihao Chen
Qiang Li
Bing Guo
CMLDRL
147
1
0
17 Oct 2022
Learning Disentangled Representations for Natural Language Definitions
Learning Disentangled Representations for Natural Language DefinitionsFindings (Findings), 2022
Danilo S. Carvalho
Giangiacomo Mercatali
Yingji Zhang
André Freitas
CoGeDRL
276
12
0
22 Sep 2022
$β$-CapsNet: Learning Disentangled Representation for CapsNet by
  Information Bottleneck
βββ-CapsNet: Learning Disentangled Representation for CapsNet by Information Bottleneck
Ming-fei Hu
Jian Liu
SSL
130
1
0
12 Sep 2022
DIDER: Discovering Interpretable Dynamically Evolving Relations
DIDER: Discovering Interpretable Dynamically Evolving RelationsIEEE Robotics and Automation Letters (RA-L), 2022
Enna Sachdeva
Chiho Choi
250
2
0
22 Aug 2022
Transductive Decoupled Variational Inference for Few-Shot Classification
Transductive Decoupled Variational Inference for Few-Shot Classification
Ashutosh Kumar Singh
Hadi Jamali Rad
BDLVLM
208
18
0
22 Aug 2022
CIGMO: Categorical invariant representations in a deep generative
  framework
CIGMO: Categorical invariant representations in a deep generative frameworkConference on Uncertainty in Artificial Intelligence (UAI), 2022
H. Hosoya
GANOCL
77
0
0
27 May 2022
Invisible-to-Visible: Privacy-Aware Human Segmentation using Airborne
  Ultrasound via Collaborative Learning Probabilistic U-Net
Invisible-to-Visible: Privacy-Aware Human Segmentation using Airborne Ultrasound via Collaborative Learning Probabilistic U-Net
Risako Tanigawa
Yasunori Ishii
Kazuki Kozuka
Takayoshi Yamashita
112
1
0
11 May 2022
ReCAB-VAE: Gumbel-Softmax Variational Inference Based on Analytic
  Divergence
ReCAB-VAE: Gumbel-Softmax Variational Inference Based on Analytic Divergence
Sangshin Oh
Seyun Um
Hong-Goo Kang
BDLDRL
167
2
0
09 May 2022
Learning Disentangled Representations of Negation and Uncertainty
Learning Disentangled Representations of Negation and UncertaintyAnnual Meeting of the Association for Computational Linguistics (ACL), 2022
J. Vasilakes
Chrysoula Zerva
Makoto Miwa
Sophia Ananiadou
SSLOODUDCoGeDRL
136
19
0
01 Apr 2022
Tampered VAE for Improved Satellite Image Time Series Classification
Tampered VAE for Improved Satellite Image Time Series Classification
Xin Cai
Y. Bi
Peter Nicholl
AI4TS
70
1
0
30 Mar 2022
Symmetry-Based Representations for Artificial and Biological General
  Intelligence
Symmetry-Based Representations for Artificial and Biological General IntelligenceFrontiers in Computational Neuroscience (Front. Comput. Neurosci.), 2022
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
221
50
0
17 Mar 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
658
70
0
01 Feb 2022
Hyperbolic Disentangled Representation for Fine-Grained Aspect
  Extraction
Hyperbolic Disentangled Representation for Fine-Grained Aspect Extraction
Chang-You Tai
Ming Li
Lun-Wei Ku
113
9
0
16 Dec 2021
Self-supervised Enhancement of Latent Discovery in GANs
Self-supervised Enhancement of Latent Discovery in GANs
Silpa Vadakkeeveetil Sreelatha
Adarsh Kappiyath
S. Sumitra
153
3
0
16 Dec 2021
Group-disentangled Representation Learning with Weakly-Supervised
  Regularization
Group-disentangled Representation Learning with Weakly-Supervised Regularization
Linh-Tam Tran
Amir Hosein Khasahmadi
Aditya Sanghi
Saeid Asgari Taghanaki
DRL
177
2
0
23 Oct 2021
Bundle Networks: Fiber Bundles, Local Trivializations, and a Generative
  Approach to Exploring Many-to-one Maps
Bundle Networks: Fiber Bundles, Local Trivializations, and a Generative Approach to Exploring Many-to-one Maps
Nico Courts
Henry Kvinge
158
6
0
13 Oct 2021
123
Next