ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.04458
  4. Cited By
CubeNet: Equivariance to 3D Rotation and Translation

CubeNet: Equivariance to 3D Rotation and Translation

12 April 2018
Daniel E. Worrall
Gabriel J. Brostow
    3DPC
ArXivPDFHTML

Papers citing "CubeNet: Equivariance to 3D Rotation and Translation"

44 / 44 papers shown
Title
EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling
EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling
Theodoros Kouzelis
Ioannis Kakogeorgiou
Spyros Gidaris
N. Komodakis
DRL
78
5
0
17 Feb 2025
Steerable Transformers
Steerable Transformers
Soumyabrata Kundu
Risi Kondor
ViT
LLMSV
30
1
0
24 May 2024
On the Fourier analysis in the SO(3) space : EquiLoPO Network
On the Fourier analysis in the SO(3) space : EquiLoPO Network
Dmitrii Zhemchuzhnikov
Sergei Grudinin
30
0
0
24 Apr 2024
Affine Invariance in Continuous-Domain Convolutional Neural Networks
Affine Invariance in Continuous-Domain Convolutional Neural Networks
A. Mohaddes
Johannes Lederer
18
1
0
13 Nov 2023
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie
  Algebras
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras
Tzu-Yuan Lin
Minghan Zhu
Maani Ghaffari
40
1
0
06 Oct 2023
General Rotation Invariance Learning for Point Clouds via Weight-Feature
  Alignment
General Rotation Invariance Learning for Point Clouds via Weight-Feature Alignment
Liang Xie
Yibo Yang
Wenxiao Wang
Binbin Lin
Deng Cai
Xiaofei He
Ronghua Liang
3DPC
18
2
0
20 Feb 2023
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and
  Group Convolution
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and Group Convolution
A. Poulenard
M. Ovsjanikov
Leonidas J. Guibas
3DPC
30
2
0
29 Nov 2022
Analysis of (sub-)Riemannian PDE-G-CNNs
Analysis of (sub-)Riemannian PDE-G-CNNs
Gijs Bellaard
Daan Bon
Gautam Pai
B. Smets
R. Duits
AI4CE
30
12
0
03 Oct 2022
Unified Fourier-based Kernel and Nonlinearity Design for Equivariant
  Networks on Homogeneous Spaces
Unified Fourier-based Kernel and Nonlinearity Design for Equivariant Networks on Homogeneous Spaces
Yinshuang Xu
Jiahui Lei
Edgar Dobriban
Kostas Daniilidis
23
19
0
16 Jun 2022
E2PN: Efficient SE(3)-Equivariant Point Network
E2PN: Efficient SE(3)-Equivariant Point Network
Minghan Zhu
Maani Ghaffari
W. A. Clark
Huei Peng
3DPC
16
18
0
11 Jun 2022
VN-Transformer: Rotation-Equivariant Attention for Vector Neurons
VN-Transformer: Rotation-Equivariant Attention for Vector Neurons
Serge Assaad
Carlton Downey
Rami Al-Rfou
Nigamaa Nayakanti
Benjamin Sapp
36
17
0
08 Jun 2022
Three-dimensional microstructure generation using generative adversarial
  neural networks in the context of continuum micromechanics
Three-dimensional microstructure generation using generative adversarial neural networks in the context of continuum micromechanics
Alexander Henkes
Henning Wessels
3DV
MedIm
AI4CE
15
38
0
31 May 2022
Implicit Equivariance in Convolutional Networks
Implicit Equivariance in Convolutional Networks
Naman Khetan
Tushar Arora
S. U. Rehman
D. K. Gupta
31
4
0
28 Nov 2021
Deformation Robust Roto-Scale-Translation Equivariant CNNs
Deformation Robust Roto-Scale-Translation Equivariant CNNs
Liyao (Mars) Gao
Guang Lin
Wei-wei Zhu
20
8
0
22 Nov 2021
SE(3) Equivariant Graph Neural Networks with Complete Local Frames
SE(3) Equivariant Graph Neural Networks with Complete Local Frames
Weitao Du
He Zhang
Yuanqi Du
Qi Meng
Wei-Neng Chen
Bin Shao
Tie-Yan Liu
53
79
0
26 Oct 2021
Capacity of Group-invariant Linear Readouts from Equivariant
  Representations: How Many Objects can be Linearly Classified Under All
  Possible Views?
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?
M. Farrell
Blake Bordelon
Shubhendu Trivedi
C. Pehlevan
15
5
0
14 Oct 2021
Geometric and Physical Quantities Improve E(3) Equivariant Message
  Passing
Geometric and Physical Quantities Improve E(3) Equivariant Message Passing
Johannes Brandstetter
Rob D. Hesselink
Elise van der Pol
Erik J. Bekkers
Max Welling
17
229
0
06 Oct 2021
Scale-invariant scale-channel networks: Deep networks that generalise to
  previously unseen scales
Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales
Ylva Jansson
T. Lindeberg
11
23
0
11 Jun 2021
Commutative Lie Group VAE for Disentanglement Learning
Commutative Lie Group VAE for Disentanglement Learning
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
32
22
0
07 Jun 2021
DISCO: accurate Discrete Scale Convolutions
DISCO: accurate Discrete Scale Convolutions
Ivan Sosnovik
A. Moskalev
A. Smeulders
20
31
0
04 Jun 2021
Equivariant Learning of Stochastic Fields: Gaussian Processes and
  Steerable Conditional Neural Processes
Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes
P. Holderrieth
M. Hutchinson
Yee Whye Teh
BDL
28
30
0
25 Nov 2020
Deep Positional and Relational Feature Learning for Rotation-Invariant
  Point Cloud Analysis
Deep Positional and Relational Feature Learning for Rotation-Invariant Point Cloud Analysis
Ruixuan Yu
Xin Wei
Federico Tombari
Jian Sun
3DPC
22
37
0
18 Nov 2020
On the Universality of Rotation Equivariant Point Cloud Networks
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym
Haggai Maron
3DPC
27
78
0
06 Oct 2020
MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
Elise van der Pol
Daniel E. Worrall
H. V. Hoof
F. Oliehoek
Max Welling
BDL
AI4CE
19
155
0
30 Jun 2020
Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review
Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review
Ying Li
Lingfei Ma
Zilong Zhong
Fei Liu
Dongpu Cao
Jonathan Li
M. Chapman
3DPC
36
390
0
20 May 2020
Theoretical Aspects of Group Equivariant Neural Networks
Theoretical Aspects of Group Equivariant Neural Networks
Carlos Esteves
19
41
0
10 Apr 2020
Local Rotation Invariance in 3D CNNs
Local Rotation Invariance in 3D CNNs
Vincent Andrearczyk
Julien Fageot
Valentin Oreiller
X. Montet
A. Depeursinge
32
23
0
19 Mar 2020
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
100
127
0
11 Mar 2020
Roto-Translation Equivariant Convolutional Networks: Application to
  Histopathology Image Analysis
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
Maxime W. Lafarge
Erik J. Bekkers
J. Pluim
R. Duits
M. Veta
MedIm
19
74
0
20 Feb 2020
On Learning Sets of Symmetric Elements
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
25
132
0
20 Feb 2020
Attentive Group Equivariant Convolutional Networks
Attentive Group Equivariant Convolutional Networks
David W. Romero
Erik J. Bekkers
Jakub M. Tomczak
Mark Hoogendoorn
22
89
0
07 Feb 2020
Quaternion Equivariant Capsule Networks for 3D Point Clouds
Quaternion Equivariant Capsule Networks for 3D Point Clouds
Yongheng Zhao
Tolga Birdal
J. E. Lenssen
Emanuele Menegatti
Leonidas J. Guibas
Federico Tombari
3DPC
23
88
0
27 Dec 2019
Representation Learning on Unit Ball with 3D Roto-Translational
  Equivariance
Representation Learning on Unit Ball with 3D Roto-Translational Equivariance
Sameera Ramasinghe
Salman Khan
Nick Barnes
Stephen Gould
13
8
0
30 Nov 2019
Co-Attentive Equivariant Neural Networks: Focusing Equivariance On
  Transformations Co-Occurring In Data
Co-Attentive Equivariant Neural Networks: Focusing Equivariance On Transformations Co-Occurring In Data
David W. Romero
Mark Hoogendoorn
19
24
0
18 Nov 2019
Deep Learning for 2D and 3D Rotatable Data: An Overview of Methods
Deep Learning for 2D and 3D Rotatable Data: An Overview of Methods
Luca Della Libera
Vladimir Golkov
Yue Zhu
Arman Mielke
Daniel Cremers
3DH
3DPC
17
4
0
31 Oct 2019
B-Spline CNNs on Lie Groups
B-Spline CNNs on Lie Groups
Erik J. Bekkers
AI4CE
18
129
0
26 Sep 2019
Covariance in Physics and Convolutional Neural Networks
Covariance in Physics and Convolutional Neural Networks
Miranda C. N. Cheng
V. Anagiannis
Maurice Weiler
P. D. Haan
Taco S. Cohen
Max Welling
45
18
0
06 Jun 2019
Provably scale-covariant continuous hierarchical networks based on
  scale-normalized differential expressions coupled in cascade
Provably scale-covariant continuous hierarchical networks based on scale-normalized differential expressions coupled in cascade
T. Lindeberg
27
19
0
29 May 2019
Discrete Rotation Equivariance for Point Cloud Recognition
Discrete Rotation Equivariance for Point Cloud Recognition
Jiaxin Li
Yingcai Bi
Gim Hee Lee
3DPC
19
24
0
31 Mar 2019
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Taco S. Cohen
Maurice Weiler
Berkay Kicanaoglu
Max Welling
38
402
0
11 Feb 2019
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
162
308
0
05 Nov 2018
Rotational 3D Texture Classification Using Group Equivariant CNNs
Rotational 3D Texture Classification Using Group Equivariant CNNs
Vincent Andrearczyk
A. Depeursinge
13
12
0
16 Oct 2018
3D Steerable CNNs: Learning Rotationally Equivariant Features in
  Volumetric Data
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
3DPC
45
494
0
06 Jul 2018
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
171
1,940
0
24 Oct 2016
1