Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1804.05012
Cited By
v1
v2 (latest)
Representing smooth functions as compositions of near-identity functions with implications for deep network optimization
13 April 2018
Peter L. Bartlett
S. Evans
Philip M. Long
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Representing smooth functions as compositions of near-identity functions with implications for deep network optimization"
24 / 24 papers shown
Title
Smooth Model Compression without Fine-Tuning
Christina Runkel
Natacha Kuete Meli
Jovita Lukasik
A. Biguri
Carola-Bibiane Schönlieb
Michael Moeller
197
0
0
30 May 2025
Multi-Label Out-of-Distribution Detection with Spectral Normalized Joint Energy
Yihan Mei
Xinyu Wang
De-Fu Zhang
Xiaoling Wang
OODD
256
5
0
08 May 2024
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
Yufeng Zhang
Boyi Liu
Qi Cai
Lingxiao Wang
Zhaoran Wang
281
14
0
30 Dec 2022
An Entropy-Based Model for Hierarchical Learning
Journal of machine learning research (JMLR), 2022
Amir-Reza Asadi
157
2
0
30 Dec 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
Journal of machine learning research (JMLR), 2022
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
452
62
0
01 May 2022
Convergence and Implicit Regularization Properties of Gradient Descent for Deep Residual Networks
Social Science Research Network (SSRN), 2022
R. Cont
Alain Rossier
Renyuan Xu
MLT
301
6
0
14 Apr 2022
Out of Distribution Data Detection Using Dropout Bayesian Neural Networks
AAAI Conference on Artificial Intelligence (AAAI), 2022
A. Nguyen
Fred Lu
Gary Lopez Munoz
Edward Raff
Charles K. Nicholas
James Holt
UQCV
172
28
0
18 Feb 2022
On Measuring Excess Capacity in Neural Networks
Neural Information Processing Systems (NeurIPS), 2022
Florian Graf
Sebastian Zeng
Bastian Rieck
Marc Niethammer
Roland Kwitt
289
11
0
16 Feb 2022
Architecture Matters in Continual Learning
Seyed Iman Mirzadeh
Arslan Chaudhry
Dong Yin
Timothy Nguyen
Razvan Pascanu
Dilan Görür
Mehrdad Farajtabar
OOD
KELM
353
63
0
01 Feb 2022
DeDUCE: Generating Counterfactual Explanations Efficiently
Benedikt Höltgen
Lisa Schut
J. Brauner
Y. Gal
CML
141
6
0
29 Nov 2021
Error Bounds for a Matrix-Vector Product Approximation with Deep ReLU Neural Networks
T. Getu
186
2
0
25 Nov 2021
Overparameterization of deep ResNet: zero loss and mean-field analysis
Journal of machine learning research (JMLR), 2021
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
ODL
188
28
0
30 May 2021
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
299
59
0
14 Dec 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
747
514
0
17 Jun 2020
A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via Overparameterization From Depth
International Conference on Machine Learning (ICML), 2020
Yiping Lu
Chao Ma
Yulong Lu
Jianfeng Lu
Lexing Ying
MLT
257
83
0
11 Mar 2020
Machine Learning from a Continuous Viewpoint
Science China Mathematics (Sci. China Math.), 2019
E. Weinan
Chao Ma
Lei Wu
254
110
0
30 Dec 2019
GResNet: Graph Residual Network for Reviving Deep GNNs from Suspended Animation
Jiawei Zhang
Lin Meng
210
55
0
12 Sep 2019
Towards Understanding the Importance of Shortcut Connections in Residual Networks
Neural Information Processing Systems (NeurIPS), 2019
Tianyi Liu
Minshuo Chen
Mo Zhou
S. Du
Enlu Zhou
T. Zhao
171
48
0
10 Sep 2019
Are deep ResNets provably better than linear predictors?
Neural Information Processing Systems (NeurIPS), 2019
Chulhee Yun
S. Sra
Ali Jadbabaie
259
13
0
09 Jul 2019
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Nets
Amir-Reza Asadi
Emmanuel Abbe
BDL
AI4CE
152
13
0
26 Jun 2019
Data Driven Governing Equations Approximation Using Deep Neural Networks
Tong Qin
Kailiang Wu
D. Xiu
PINN
187
289
0
13 Nov 2018
Interpreting Deep Learning: The Machine Learning Rorschach Test?
Adam S. Charles
AAML
HAI
AI4CE
190
9
0
01 Jun 2018
Norm-Preservation: Why Residual Networks Can Become Extremely Deep?
Alireza Zaeemzadeh
Nazanin Rahnavard
M. Shah
139
73
0
18 May 2018
Gradient descent with identity initialization efficiently learns positive definite linear transformations by deep residual networks
Peter L. Bartlett
D. Helmbold
Philip M. Long
294
121
0
16 Feb 2018
1