Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.05146
Cited By
v1
v2 (latest)
A comparison of methods for model selection when estimating individual treatment effects
14 April 2018
Alejandro Schuler
M. Baiocchi
Robert Tibshirani
N. Shah
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A comparison of methods for model selection when estimating individual treatment effects"
19 / 19 papers shown
Title
Honesty in Causal Forests: When It Helps and When It Hurts
Yanfang Hou
Carlos Fernández-Loría
17
0
0
16 Jun 2025
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
Vahid Balazadeh
Hamidreza Kamkari
Valentin Thomas
Benson Li
Junwei Ma
Jesse C. Cresswell
Rahul G. Krishnan
CML
17
0
0
09 Jun 2025
Causal Q-Aggregation for CATE Model Selection
Hui Lan
Vasilis Syrgkanis
CML
107
4
0
25 Oct 2023
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
212
2
0
16 Oct 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
56
1
0
16 Jan 2023
Orthogonal Series Estimation for the Ratio of Conditional Expectation Functions
Kazuhiko Shinoda
T. Hoshino
CML
66
0
0
26 Dec 2022
Out-of-sample scoring and automatic selection of causal estimators
E. Kraev
Timo Flesch
H. Lekunze
Mark Harley
Pere P. Morell
CML
11
1
0
20 Dec 2022
Efficient Heterogeneous Treatment Effect Estimation With Multiple Experiments and Multiple Outcomes
Leon Yao
Caroline Lo
Israel Nir
S. Tan
Ariel Evnine
Adam Lerer
A. Peysakhovich
CML
57
7
0
10 Jun 2022
Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance
Gabriel Okasa
CML
51
6
0
30 Jan 2022
Meta-Analysis of Randomized Experiments with Applications to Heavy-Tailed Response Data
Nilesh Tripuraneni
Dhruv Madeka
Dean Phillips Foster
Dominique C. Perrault-Joncas
Michael I. Jordan
69
5
0
14 Dec 2021
A pragmatic approach to estimating average treatment effects from EHR data: the effect of prone positioning on mechanically ventilated COVID-19 patients
A. Izdebski
P. Thoral
R. Lalisang
Dean McHugh
D. Gommers
...
Rutger van Raalte
M. V. Tellingen
Niels C. Gritters van den Oever
Paul Elbers
Giovanni Cina
CML
48
0
0
14 Sep 2021
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions
Amit Sharma
Vasilis Syrgkanis
Cheng Zhang
Emre Kıcıman
75
26
0
27 Aug 2021
Causal Decision Making and Causal Effect Estimation Are Not the Same... and Why It Matters
Carlos Fernández-Loría
F. Provost
CML
67
45
0
08 Apr 2021
Shrinkage Bayesian Causal Forests for Heterogeneous Treatment Effects Estimation
A. Caron
G. Baio
I. Manolopoulou
CML
73
16
0
12 Feb 2021
Estimating Individual Treatment Effects using Non-Parametric Regression Models: a Review
A. Caron
G. Baio
I. Manolopoulou
CML
94
56
0
14 Sep 2020
Stable discovery of interpretable subgroups via calibration in causal studies
Raaz Dwivedi
Yan Shuo Tan
Briton Park
Mian Wei
Kevin Horgan
D. Madigan
Bin Yu
CML
44
30
0
23 Aug 2020
Learning Counterfactual Representations for Estimating Individual Dose-Response Curves
Patrick Schwab
Lorenz Linhardt
Stefan Bauer
J. M. Buhmann
W. Karlen
CML
OOD
101
135
0
03 Feb 2019
Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks
Patrick Schwab
Lorenz Linhardt
W. Karlen
CML
BDL
102
111
0
01 Oct 2018
Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition
Vincent Dorie
J. Hill
Uri Shalit
M. Scott
D. Cervone
CML
283
288
0
09 Jul 2017
1