ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.05146
  4. Cited By
A comparison of methods for model selection when estimating individual
  treatment effects
v1v2 (latest)

A comparison of methods for model selection when estimating individual treatment effects

14 April 2018
Alejandro Schuler
M. Baiocchi
Robert Tibshirani
N. Shah
    CML
ArXiv (abs)PDFHTML

Papers citing "A comparison of methods for model selection when estimating individual treatment effects"

19 / 19 papers shown
Title
Honesty in Causal Forests: When It Helps and When It Hurts
Honesty in Causal Forests: When It Helps and When It Hurts
Yanfang Hou
Carlos Fernández-Loría
17
0
0
16 Jun 2025
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
Vahid Balazadeh
Hamidreza Kamkari
Valentin Thomas
Benson Li
Junwei Ma
Jesse C. Cresswell
Rahul G. Krishnan
CML
17
0
0
09 Jun 2025
Causal Q-Aggregation for CATE Model Selection
Causal Q-Aggregation for CATE Model Selection
Hui Lan
Vasilis Syrgkanis
CML
107
4
0
25 Oct 2023
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CMLOOD
212
2
0
16 Oct 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
56
1
0
16 Jan 2023
Orthogonal Series Estimation for the Ratio of Conditional Expectation
  Functions
Orthogonal Series Estimation for the Ratio of Conditional Expectation Functions
Kazuhiko Shinoda
T. Hoshino
CML
66
0
0
26 Dec 2022
Out-of-sample scoring and automatic selection of causal estimators
Out-of-sample scoring and automatic selection of causal estimators
E. Kraev
Timo Flesch
H. Lekunze
Mark Harley
Pere P. Morell
CML
13
1
0
20 Dec 2022
Efficient Heterogeneous Treatment Effect Estimation With Multiple
  Experiments and Multiple Outcomes
Efficient Heterogeneous Treatment Effect Estimation With Multiple Experiments and Multiple Outcomes
Leon Yao
Caroline Lo
Israel Nir
S. Tan
Ariel Evnine
Adam Lerer
A. Peysakhovich
CML
57
7
0
10 Jun 2022
Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit
  Performance
Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance
Gabriel Okasa
CML
51
6
0
30 Jan 2022
Meta-Analysis of Randomized Experiments with Applications to
  Heavy-Tailed Response Data
Meta-Analysis of Randomized Experiments with Applications to Heavy-Tailed Response Data
Nilesh Tripuraneni
Dhruv Madeka
Dean Phillips Foster
Dominique C. Perrault-Joncas
Michael I. Jordan
69
5
0
14 Dec 2021
A pragmatic approach to estimating average treatment effects from EHR
  data: the effect of prone positioning on mechanically ventilated COVID-19
  patients
A pragmatic approach to estimating average treatment effects from EHR data: the effect of prone positioning on mechanically ventilated COVID-19 patients
A. Izdebski
P. Thoral
R. Lalisang
Dean McHugh
D. Gommers
...
Rutger van Raalte
M. V. Tellingen
Niels C. Gritters van den Oever
Paul Elbers
Giovanni Cina
CML
48
0
0
14 Sep 2021
DoWhy: Addressing Challenges in Expressing and Validating Causal
  Assumptions
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions
Amit Sharma
Vasilis Syrgkanis
Cheng Zhang
Emre Kıcıman
75
26
0
27 Aug 2021
Causal Decision Making and Causal Effect Estimation Are Not the Same...
  and Why It Matters
Causal Decision Making and Causal Effect Estimation Are Not the Same... and Why It Matters
Carlos Fernández-Loría
F. Provost
CML
67
45
0
08 Apr 2021
Shrinkage Bayesian Causal Forests for Heterogeneous Treatment Effects
  Estimation
Shrinkage Bayesian Causal Forests for Heterogeneous Treatment Effects Estimation
A. Caron
G. Baio
I. Manolopoulou
CML
84
16
0
12 Feb 2021
Estimating Individual Treatment Effects using Non-Parametric Regression
  Models: a Review
Estimating Individual Treatment Effects using Non-Parametric Regression Models: a Review
A. Caron
G. Baio
I. Manolopoulou
CML
109
56
0
14 Sep 2020
Stable discovery of interpretable subgroups via calibration in causal
  studies
Stable discovery of interpretable subgroups via calibration in causal studies
Raaz Dwivedi
Yan Shuo Tan
Briton Park
Mian Wei
Kevin Horgan
D. Madigan
Bin Yu
CML
46
30
0
23 Aug 2020
Learning Counterfactual Representations for Estimating Individual
  Dose-Response Curves
Learning Counterfactual Representations for Estimating Individual Dose-Response Curves
Patrick Schwab
Lorenz Linhardt
Stefan Bauer
J. M. Buhmann
W. Karlen
CMLOOD
101
135
0
03 Feb 2019
Perfect Match: A Simple Method for Learning Representations For
  Counterfactual Inference With Neural Networks
Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks
Patrick Schwab
Lorenz Linhardt
W. Karlen
CMLBDL
102
111
0
01 Oct 2018
Automated versus do-it-yourself methods for causal inference: Lessons
  learned from a data analysis competition
Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition
Vincent Dorie
J. Hill
Uri Shalit
M. Scott
D. Cervone
CML
283
288
0
09 Jul 2017
1