ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.08838
  4. Cited By
Measuring the Intrinsic Dimension of Objective Landscapes

Measuring the Intrinsic Dimension of Objective Landscapes

24 April 2018
Chunyuan Li
Heerad Farkhoor
Rosanne Liu
J. Yosinski
ArXivPDFHTML

Papers citing "Measuring the Intrinsic Dimension of Objective Landscapes"

50 / 88 papers shown
Title
Neural ODE Transformers: Analyzing Internal Dynamics and Adaptive Fine-tuning
Neural ODE Transformers: Analyzing Internal Dynamics and Adaptive Fine-tuning
Anh Tong
Thanh Nguyen-Tang
Dongeun Lee
Duc Nguyen
Toan M. Tran
David Hall
Cheongwoong Kang
Jaesik Choi
35
0
0
03 Mar 2025
BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models
BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models
Yibin Wang
H. Shi
Ligong Han
Dimitris N. Metaxas
Hao Wang
BDL
UQLM
113
6
0
28 Jan 2025
LDAdam: Adaptive Optimization from Low-Dimensional Gradient Statistics
LDAdam: Adaptive Optimization from Low-Dimensional Gradient Statistics
Thomas Robert
M. Safaryan
Ionut-Vlad Modoranu
Dan Alistarh
ODL
33
2
0
21 Oct 2024
Collaborative and Efficient Personalization with Mixtures of Adaptors
Collaborative and Efficient Personalization with Mixtures of Adaptors
Abdulla Jasem Almansoori
Samuel Horváth
Martin Takáč
FedML
44
2
0
04 Oct 2024
Geometric Signatures of Compositionality Across a Language Model's Lifetime
Geometric Signatures of Compositionality Across a Language Model's Lifetime
Jin Hwa Lee
Thomas Jiralerspong
Lei Yu
Yoshua Bengio
Emily Cheng
CoGe
84
0
0
02 Oct 2024
Selective Aggregation for Low-Rank Adaptation in Federated Learning
Selective Aggregation for Low-Rank Adaptation in Federated Learning
Pengxin Guo
Shuang Zeng
Y. Wang
Huijie Fan
Feifei Wang
Liangqiong Qu
FedML
44
8
0
02 Oct 2024
LoRA-Pro: Are Low-Rank Adapters Properly Optimized?
LoRA-Pro: Are Low-Rank Adapters Properly Optimized?
Zhengbo Wang
Jian Liang
Ran He
Zilei Wang
Tieniu Tan
50
15
0
25 Jul 2024
SAFT: Towards Out-of-Distribution Generalization in Fine-Tuning
SAFT: Towards Out-of-Distribution Generalization in Fine-Tuning
Bac Nguyen
Stefan Uhlich
Fabien Cardinaux
Lukas Mauch
Marzieh Edraki
Aaron Courville
OODD
CLL
VLM
54
3
0
03 Jul 2024
Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead
Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead
Rickard Brüel-Gabrielsson
Jiacheng Zhu
Onkar Bhardwaj
Leshem Choshen
Kristjan Greenewald
Mikhail Yurochkin
Justin Solomon
43
5
0
17 Jun 2024
ExPLoRA: Parameter-Efficient Extended Pre-Training to Adapt Vision Transformers under Domain Shifts
ExPLoRA: Parameter-Efficient Extended Pre-Training to Adapt Vision Transformers under Domain Shifts
Samar Khanna
Medhanie Irgau
David B. Lobell
Stefano Ermon
VLM
32
4
0
16 Jun 2024
MiLoRA: Harnessing Minor Singular Components for Parameter-Efficient LLM Finetuning
MiLoRA: Harnessing Minor Singular Components for Parameter-Efficient LLM Finetuning
Hanqing Wang
Zeguan Xiao
Shuo Wang
Guanhua Chen
Guanhua Chen
44
19
0
13 Jun 2024
CorDA: Context-Oriented Decomposition Adaptation of Large Language Models for Task-Aware Parameter-Efficient Fine-tuning
CorDA: Context-Oriented Decomposition Adaptation of Large Language Models for Task-Aware Parameter-Efficient Fine-tuning
Yibo Yang
Xiaojie Li
Zhongzhu Zhou
S. Song
Jianlong Wu
Liqiang Nie
Bernard Ghanem
45
6
0
07 Jun 2024
Compressible Dynamics in Deep Overparameterized Low-Rank Learning &
  Adaptation
Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation
Can Yaras
Peng Wang
Laura Balzano
Qing Qu
AI4CE
37
12
0
06 Jun 2024
Does SGD really happen in tiny subspaces?
Does SGD really happen in tiny subspaces?
Minhak Song
Kwangjun Ahn
Chulhee Yun
69
4
1
25 May 2024
Emergence of a High-Dimensional Abstraction Phase in Language Transformers
Emergence of a High-Dimensional Abstraction Phase in Language Transformers
Emily Cheng
Diego Doimo
Corentin Kervadec
Iuri Macocco
Jade Yu
A. Laio
Marco Baroni
112
11
0
24 May 2024
Machine Unlearning via Null Space Calibration
Machine Unlearning via Null Space Calibration
Huiqiang Chen
Tianqing Zhu
Xin Yu
Wanlei Zhou
41
6
0
21 Apr 2024
PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large Language Models
PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large Language Models
Fanxu Meng
Zhaohui Wang
Muhan Zhang
VLM
64
70
0
03 Apr 2024
Introducing Routing Functions to Vision-Language Parameter-Efficient
  Fine-Tuning with Low-Rank Bottlenecks
Introducing Routing Functions to Vision-Language Parameter-Efficient Fine-Tuning with Low-Rank Bottlenecks
Tingyu Qu
Tinne Tuytelaars
Marie-Francine Moens
MoE
43
2
0
14 Mar 2024
Sparse is Enough in Fine-tuning Pre-trained Large Language Models
Sparse is Enough in Fine-tuning Pre-trained Large Language Models
Weixi Song
Z. Li
Lefei Zhang
Hai Zhao
Bo Du
VLM
19
7
0
19 Dec 2023
Federated Full-Parameter Tuning of Billion-Sized Language Models with
  Communication Cost under 18 Kilobytes
Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes
Zhen Qin
Daoyuan Chen
Bingchen Qian
Bolin Ding
Yaliang Li
Shuiguang Deng
FedML
32
32
0
11 Dec 2023
PCDP-SGD: Improving the Convergence of Differentially Private SGD via Projection in Advance
PCDP-SGD: Improving the Convergence of Differentially Private SGD via Projection in Advance
Haichao Sha
Ruixuan Liu
Yi-xiao Liu
Hong Chen
52
1
0
06 Dec 2023
A Rank Stabilization Scaling Factor for Fine-Tuning with LoRA
A Rank Stabilization Scaling Factor for Fine-Tuning with LoRA
Damjan Kalajdzievski
ALM
22
77
0
28 Nov 2023
The Shape of Learning: Anisotropy and Intrinsic Dimensions in
  Transformer-Based Models
The Shape of Learning: Anisotropy and Intrinsic Dimensions in Transformer-Based Models
Anton Razzhigaev
Matvey Mikhalchuk
Elizaveta Goncharova
Ivan V. Oseledets
Denis Dimitrov
Andrey Kuznetsov
27
7
0
10 Nov 2023
Efficient Cross-Task Prompt Tuning for Few-Shot Conversational Emotion
  Recognition
Efficient Cross-Task Prompt Tuning for Few-Shot Conversational Emotion Recognition
Yige Xu
Zhiwei Zeng
Zhiqi Shen
VLM
25
3
0
23 Oct 2023
Bridging Information-Theoretic and Geometric Compression in Language
  Models
Bridging Information-Theoretic and Geometric Compression in Language Models
Emily Cheng
Corentin Kervadec
Marco Baroni
34
16
0
20 Oct 2023
Decomposed Prompt Tuning via Low-Rank Reparameterization
Decomposed Prompt Tuning via Low-Rank Reparameterization
Yao Xiao
Lu Xu
Jiaxi Li
Wei Lu
Xiaoli Li
VLM
17
6
0
16 Oct 2023
NOLA: Compressing LoRA using Linear Combination of Random Basis
NOLA: Compressing LoRA using Linear Combination of Random Basis
Soroush Abbasi Koohpayegani
K. Navaneet
Parsa Nooralinejad
Soheil Kolouri
Hamed Pirsiavash
40
12
0
04 Oct 2023
AdaptNet: Policy Adaptation for Physics-Based Character Control
AdaptNet: Policy Adaptation for Physics-Based Character Control
Pei Xu
Kaixiang Xie
Sheldon Andrews
P. Kry
Michael Neff
Morgan McGuire
Ioannis Karamouzas
Victor Zordan
TTA
37
16
0
30 Sep 2023
Prompting or Fine-tuning? A Comparative Study of Large Language Models
  for Taxonomy Construction
Prompting or Fine-tuning? A Comparative Study of Large Language Models for Taxonomy Construction
Boqi Chen
Fandi Yi
Dániel Varró
29
16
0
04 Sep 2023
Quantifying lottery tickets under label noise: accuracy, calibration,
  and complexity
Quantifying lottery tickets under label noise: accuracy, calibration, and complexity
V. Arora
Daniele Irto
Sebastian Goldt
G. Sanguinetti
36
2
0
21 Jun 2023
Jointly Reparametrized Multi-Layer Adaptation for Efficient and Private
  Tuning
Jointly Reparametrized Multi-Layer Adaptation for Efficient and Private Tuning
Umang Gupta
Aram Galstyan
Greg Ver Steeg
6
2
0
30 May 2023
Probing the Purview of Neural Networks via Gradient Analysis
Probing the Purview of Neural Networks via Gradient Analysis
Jinsol Lee
Charles Lehman
M. Prabhushankar
Ghassan AlRegib
29
7
0
06 Apr 2023
A survey of deep learning optimizers -- first and second order methods
A survey of deep learning optimizers -- first and second order methods
Rohan Kashyap
ODL
31
6
0
28 Nov 2022
PAC-Bayes Compression Bounds So Tight That They Can Explain
  Generalization
PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization
Sanae Lotfi
Marc Finzi
Sanyam Kapoor
Andres Potapczynski
Micah Goldblum
A. Wilson
BDL
MLT
AI4CE
29
51
0
24 Nov 2022
Two Facets of SDE Under an Information-Theoretic Lens: Generalization of
  SGD via Training Trajectories and via Terminal States
Two Facets of SDE Under an Information-Theoretic Lens: Generalization of SGD via Training Trajectories and via Terminal States
Ziqiao Wang
Yongyi Mao
27
10
0
19 Nov 2022
Parameter-Efficient Tuning Makes a Good Classification Head
Parameter-Efficient Tuning Makes a Good Classification Head
Zhuoyi Yang
Ming Ding
Yanhui Guo
Qingsong Lv
Jie Tang
VLM
37
14
0
30 Oct 2022
Different Tunes Played with Equal Skill: Exploring a Unified
  Optimization Subspace for Delta Tuning
Different Tunes Played with Equal Skill: Exploring a Unified Optimization Subspace for Delta Tuning
Jing Yi
Weize Chen
Yujia Qin
Yankai Lin
Ning Ding
Xu Han
Zhiyuan Liu
Maosong Sun
Jie Zhou
15
2
0
24 Oct 2022
Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
  Networks on Coupled Ordinary Differential Equations
Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural Networks on Coupled Ordinary Differential Equations
Alexander New
B. Eng
A. Timm
A. Gearhart
17
4
0
14 Oct 2022
Unmasking the Lottery Ticket Hypothesis: What's Encoded in a Winning
  Ticket's Mask?
Unmasking the Lottery Ticket Hypothesis: What's Encoded in a Winning Ticket's Mask?
Mansheej Paul
F. Chen
Brett W. Larsen
Jonathan Frankle
Surya Ganguli
Gintare Karolina Dziugaite
UQCV
25
38
0
06 Oct 2022
Extremely Simple Activation Shaping for Out-of-Distribution Detection
Extremely Simple Activation Shaping for Out-of-Distribution Detection
Andrija Djurisic
Nebojsa Bozanic
Arjun Ashok
Rosanne Liu
OODD
169
150
0
20 Sep 2022
Efficient Methods for Natural Language Processing: A Survey
Efficient Methods for Natural Language Processing: A Survey
Marcos Vinícius Treviso
Ji-Ung Lee
Tianchu Ji
Betty van Aken
Qingqing Cao
...
Emma Strubell
Niranjan Balasubramanian
Leon Derczynski
Iryna Gurevych
Roy Schwartz
28
109
0
31 Aug 2022
LGV: Boosting Adversarial Example Transferability from Large Geometric
  Vicinity
LGV: Boosting Adversarial Example Transferability from Large Geometric Vicinity
Martin Gubri
Maxime Cordy
Mike Papadakis
Yves Le Traon
Koushik Sen
AAML
27
51
0
26 Jul 2022
Towards Semantic Communication Protocols: A Probabilistic Logic
  Perspective
Towards Semantic Communication Protocols: A Probabilistic Logic Perspective
Sejin Seo
Jihong Park
Seung-Woo Ko
Jinho D. Choi
M. Bennis
Seong-Lyun Kim
27
22
0
08 Jul 2022
When Does Differentially Private Learning Not Suffer in High Dimensions?
When Does Differentially Private Learning Not Suffer in High Dimensions?
Xuechen Li
Daogao Liu
Tatsunori Hashimoto
Huseyin A. Inan
Janardhan Kulkarni
Y. Lee
Abhradeep Thakurta
25
58
0
01 Jul 2022
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
Piotr Tempczyk
Rafał Michaluk
Łukasz Garncarek
Przemysław Spurek
Jacek Tabor
Adam Goliñski
35
26
0
29 Jun 2022
Few-Shot Learning by Dimensionality Reduction in Gradient Space
Few-Shot Learning by Dimensionality Reduction in Gradient Space
M. Gauch
M. Beck
Thomas Adler
D. Kotsur
Stefan Fiel
...
Markus Holzleitner
Werner Zellinger
D. Klotz
Sepp Hochreiter
Sebastian Lehner
35
9
0
07 Jun 2022
PERFECT: Prompt-free and Efficient Few-shot Learning with Language
  Models
PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models
Rabeeh Karimi Mahabadi
Luke Zettlemoyer
James Henderson
Marzieh Saeidi
Lambert Mathias
Ves Stoyanov
Majid Yazdani
VLM
31
69
0
03 Apr 2022
APG: Adaptive Parameter Generation Network for Click-Through Rate
  Prediction
APG: Adaptive Parameter Generation Network for Click-Through Rate Prediction
Bencheng Yan
Pengjie Wang
Kai Zhang
Feng Li
Hongbo Deng
Jian Xu
Bo Zheng
19
20
0
30 Mar 2022
Parameter-efficient Model Adaptation for Vision Transformers
Parameter-efficient Model Adaptation for Vision Transformers
Xuehai He
Chunyuan Li
Pengchuan Zhang
Jianwei Yang
X. Wang
28
84
0
29 Mar 2022
Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for
  Pre-trained Language Models
Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models
Ning Ding
Yujia Qin
Guang Yang
Fu Wei
Zonghan Yang
...
Jianfei Chen
Yang Liu
Jie Tang
Juan Li
Maosong Sun
20
196
0
14 Mar 2022
12
Next