ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.06400
  4. Cited By
When Regression Meets Manifold Learning for Object Recognition and Pose
  Estimation

When Regression Meets Manifold Learning for Object Recognition and Pose Estimation

16 May 2018
Mai Bui
Sergey Zakharov
Shadi Albarqouni
Slobodan Ilic
Nassir Navab
ArXivPDFHTML

Papers citing "When Regression Meets Manifold Learning for Object Recognition and Pose Estimation"

7 / 7 papers shown
Title
PViT-6D: Overclocking Vision Transformers for 6D Pose Estimation with
  Confidence-Level Prediction and Pose Tokens
PViT-6D: Overclocking Vision Transformers for 6D Pose Estimation with Confidence-Level Prediction and Pose Tokens
Sebastian Stapf
Tobias Bauernfeind
Marco Riboldi
ViT
25
1
0
29 Nov 2023
A Probabilistic Rotation Representation for Symmetric Shapes With an
  Efficiently Computable Bingham Loss Function
A Probabilistic Rotation Representation for Symmetric Shapes With an Efficiently Computable Bingham Loss Function
Hiroya Sato
Takuya Ikeda
Koichi Nishiwaki
24
2
0
30 May 2023
6D Pose Estimation for Textureless Objects on RGB Frames using
  Multi-View Optimization
6D Pose Estimation for Textureless Objects on RGB Frames using Multi-View Optimization
Jun Yang
Wenjie Xue
Sahar Ghavidel
Steven L. Waslander
42
11
0
20 Oct 2022
DPODv2: Dense Correspondence-Based 6 DoF Pose Estimation
DPODv2: Dense Correspondence-Based 6 DoF Pose Estimation
I. Shugurov
Sergey Zakharov
Slobodan Ilic
20
56
0
06 Jul 2022
OSOP: A Multi-Stage One Shot Object Pose Estimation Framework
OSOP: A Multi-Stage One Shot Object Pose Estimation Framework
I. Shugurov
Fu Li
Benjamin Busam
Slobodan Ilic
40
85
0
29 Mar 2022
Probabilistic Rotation Representation With an Efficiently Computable
  Bingham Loss Function and Its Application to Pose Estimation
Probabilistic Rotation Representation With an Efficiently Computable Bingham Loss Function and Its Application to Pose Estimation
Hiroya Sato
Takuya Ikeda
Koichi Nishiwaki
41
1
0
09 Mar 2022
6D Object Pose Regression via Supervised Learning on Point Clouds
6D Object Pose Regression via Supervised Learning on Point Clouds
Ge Gao
M. Lauri
Yulong Wang
Xiaolin Hu
Jianwei Zhang
Simone Frintrop
3DPC
30
81
0
24 Jan 2020
1