Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.06400
Cited By
When Regression Meets Manifold Learning for Object Recognition and Pose Estimation
16 May 2018
Mai Bui
Sergey Zakharov
Shadi Albarqouni
Slobodan Ilic
Nassir Navab
Re-assign community
ArXiv
PDF
HTML
Papers citing
"When Regression Meets Manifold Learning for Object Recognition and Pose Estimation"
7 / 7 papers shown
Title
PViT-6D: Overclocking Vision Transformers for 6D Pose Estimation with Confidence-Level Prediction and Pose Tokens
Sebastian Stapf
Tobias Bauernfeind
Marco Riboldi
ViT
25
1
0
29 Nov 2023
A Probabilistic Rotation Representation for Symmetric Shapes With an Efficiently Computable Bingham Loss Function
Hiroya Sato
Takuya Ikeda
Koichi Nishiwaki
29
2
0
30 May 2023
6D Pose Estimation for Textureless Objects on RGB Frames using Multi-View Optimization
Jun Yang
Wenjie Xue
Sahar Ghavidel
Steven L. Waslander
42
11
0
20 Oct 2022
DPODv2: Dense Correspondence-Based 6 DoF Pose Estimation
I. Shugurov
Sergey Zakharov
Slobodan Ilic
20
56
0
06 Jul 2022
OSOP: A Multi-Stage One Shot Object Pose Estimation Framework
I. Shugurov
Fu Li
Benjamin Busam
Slobodan Ilic
40
85
0
29 Mar 2022
Probabilistic Rotation Representation With an Efficiently Computable Bingham Loss Function and Its Application to Pose Estimation
Hiroya Sato
Takuya Ikeda
Koichi Nishiwaki
41
1
0
09 Mar 2022
6D Object Pose Regression via Supervised Learning on Point Clouds
Ge Gao
M. Lauri
Yulong Wang
Xiaolin Hu
Jianwei Zhang
Simone Frintrop
3DPC
30
81
0
24 Jan 2020
1