ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.06576
  4. Cited By
Mad Max: Affine Spline Insights into Deep Learning

Mad Max: Affine Spline Insights into Deep Learning

17 May 2018
Randall Balestriero
Richard Baraniuk
    AI4CE
ArXivPDFHTML

Papers citing "Mad Max: Affine Spline Insights into Deep Learning"

10 / 10 papers shown
Title
On the Geometry of Deep Learning
On the Geometry of Deep Learning
Randall Balestriero
Ahmed Imtiaz Humayun
Richard G. Baraniuk
AI4CE
31
1
0
09 Aug 2024
A max-affine spline approximation of neural networks using the Legendre
  transform of a convex-concave representation
A max-affine spline approximation of neural networks using the Legendre transform of a convex-concave representation
Adam Perrett
Danny Wood
Gavin Brown
9
0
0
16 Jul 2023
SpecXAI -- Spectral interpretability of Deep Learning Models
SpecXAI -- Spectral interpretability of Deep Learning Models
Stefan Druc
Peter Wooldridge
A. Krishnamurthy
S. Sarkar
Aditya Balu
2
0
0
20 Feb 2023
Batch Normalization Explained
Batch Normalization Explained
Randall Balestriero
Richard G. Baraniuk
AAML
13
16
0
29 Sep 2022
Time Series Simulation by Conditional Generative Adversarial Net
Time Series Simulation by Conditional Generative Adversarial Net
Rao Fu
Jie Chen
Shutian Zeng
Yiping Zhuang
Agus Sudjianto
AI4TS
OOD
GAN
9
47
0
25 Apr 2019
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
163
596
0
22 Sep 2016
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
V. Papyan
Yaniv Romano
Michael Elad
48
283
0
27 Jul 2016
Piecewise convexity of artificial neural networks
Piecewise convexity of artificial neural networks
Blaine Rister
Daniel L Rubin
AAML
ODL
16
31
0
17 Jul 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
247
5,813
0
08 Jul 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
245
9,042
0
06 Jun 2015
1