Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.06576
Cited By
Mad Max: Affine Spline Insights into Deep Learning
17 May 2018
Randall Balestriero
Richard Baraniuk
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mad Max: Affine Spline Insights into Deep Learning"
10 / 10 papers shown
Title
On the Geometry of Deep Learning
Randall Balestriero
Ahmed Imtiaz Humayun
Richard G. Baraniuk
AI4CE
31
1
0
09 Aug 2024
A max-affine spline approximation of neural networks using the Legendre transform of a convex-concave representation
Adam Perrett
Danny Wood
Gavin Brown
9
0
0
16 Jul 2023
SpecXAI -- Spectral interpretability of Deep Learning Models
Stefan Druc
Peter Wooldridge
A. Krishnamurthy
S. Sarkar
Aditya Balu
2
0
0
20 Feb 2023
Batch Normalization Explained
Randall Balestriero
Richard G. Baraniuk
AAML
13
16
0
29 Sep 2022
Time Series Simulation by Conditional Generative Adversarial Net
Rao Fu
Jie Chen
Shutian Zeng
Yiping Zhuang
Agus Sudjianto
AI4TS
OOD
GAN
9
47
0
25 Apr 2019
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
163
596
0
22 Sep 2016
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
V. Papyan
Yaniv Romano
Michael Elad
48
283
0
27 Jul 2016
Piecewise convexity of artificial neural networks
Blaine Rister
Daniel L Rubin
AAML
ODL
16
31
0
17 Jul 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
247
5,813
0
08 Jul 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
245
9,042
0
06 Jun 2015
1