ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.07226
  4. Cited By
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows

Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows

18 May 2018
George Papamakarios
D. Sterratt
Iain Murray
    BDL
ArXivPDFHTML

Papers citing "Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows"

50 / 202 papers shown
Title
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio
  Estimation
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation
Arnaud Delaunoy
Joeri Hermans
François Rozet
Antoine Wehenkel
Gilles Louppe
15
30
0
29 Aug 2022
Adversarial Bayesian Simulation
Adversarial Bayesian Simulation
YueXing Wang
Veronika Rovcková
GAN
BDL
19
5
0
25 Aug 2022
An Optimal Likelihood Free Method for Biological Model Selection
An Optimal Likelihood Free Method for Biological Model Selection
Vincent D. Zaballa
E. Hui
16
0
0
03 Aug 2022
On minimax density estimation via measure transport
On minimax density estimation via measure transport
Sven Wang
Youssef Marzouk
OT
16
19
0
20 Jul 2022
Neural Posterior Estimation with Differentiable Simulators
Neural Posterior Estimation with Differentiable Simulators
Justine Zeghal
F. Lanusse
Alexandre Boucaud
B. Remy
E. Aubourg
13
14
0
12 Jul 2022
Guided sequential ABC schemes for intractable Bayesian models
Guided sequential ABC schemes for intractable Bayesian models
Umberto Picchini
M. Tamborrino
45
8
0
24 Jun 2022
Bayesian model calibration for block copolymer self-assembly:
  Likelihood-free inference and expected information gain computation via
  measure transport
Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport
Ricardo Baptista
Lianghao Cao
Joshua Chen
Omar Ghattas
Fengyi Li
Youssef M. Marzouk
J. Oden
16
11
0
22 Jun 2022
Calibrating Agent-based Models to Microdata with Graph Neural Networks
Calibrating Agent-based Models to Microdata with Graph Neural Networks
Joel Dyer
Patrick W Cannon
J. Farmer
Sebastian M. Schmon
25
11
0
15 Jun 2022
Likelihood-Free Inference with Generative Neural Networks via Scoring
  Rule Minimization
Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization
Lorenzo Pacchiardi
Ritabrata Dutta
TPM
BDL
UQCV
GAN
13
18
0
31 May 2022
Agent-based Simulation of District-based Elections
Agent-based Simulation of District-based Elections
Adway Mitra
9
0
0
28 May 2022
On predictive inference for intractable models via approximate Bayesian
  computation
On predictive inference for intractable models via approximate Bayesian computation
Marko Jarvenpaa
J. Corander
TPM
25
2
0
23 Mar 2022
Variational inference of fractional Brownian motion with linear
  computational complexity
Variational inference of fractional Brownian motion with linear computational complexity
Hippolyte Verdier
Franccois Laurent
Alhassan Cassé
Christian L. Vestergaard
Jean-Baptiste Masson
9
6
0
15 Mar 2022
GATSBI: Generative Adversarial Training for Simulation-Based Inference
GATSBI: Generative Adversarial Training for Simulation-Based Inference
Poornima Ramesh
Jan-Matthis Lueckmann
Jan Boelts
Álvaro Tejero-Cantero
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
GAN
31
33
0
12 Mar 2022
Variational methods for simulation-based inference
Variational methods for simulation-based inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
16
46
0
08 Mar 2022
Amortised Likelihood-free Inference for Expensive Time-series Simulators
  with Signatured Ratio Estimation
Amortised Likelihood-free Inference for Expensive Time-series Simulators with Signatured Ratio Estimation
Joel Dyer
Patrick W Cannon
Sebastian M. Schmon
16
9
0
23 Feb 2022
Robust Bayesian Inference for Simulator-based Models via the MMD
  Posterior Bootstrap
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
18
42
0
09 Feb 2022
Black-box Bayesian inference for economic agent-based models
Black-box Bayesian inference for economic agent-based models
Joel Dyer
Patrick W Cannon
J. Farmer
Sebastian M. Schmon
11
23
0
01 Feb 2022
Learning Summary Statistics for Bayesian Inference with Autoencoders
Learning Summary Statistics for Bayesian Inference with Autoencoders
Carlo Albert
S. Ulzega
Firat Ozdemir
F. Pérez-Cruz
Antonietta Mira
BDL
33
10
0
28 Jan 2022
Detecting Model Misspecification in Amortized Bayesian Inference with
  Neural Networks
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks
Marvin Schmitt
Paul-Christian Burkner
Ullrich Kothe
Stefan T. Radev
22
34
0
16 Dec 2021
Measuring the accuracy of likelihood-free inference
Measuring the accuracy of likelihood-free inference
Aden Forrow
R. Baker
6
2
0
15 Dec 2021
Group equivariant neural posterior estimation
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
22
31
0
25 Nov 2021
Approximate Bayesian Computation via Classification
Approximate Bayesian Computation via Classification
Yuexi Wang
Tetsuya Kaji
Veronika Rockova
19
4
0
22 Nov 2021
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal
  Neural Ratio Estimation
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation
A. Cole
Benjamin Kurt Miller
S. Witte
Maxwell X. Cai
M. Grootes
F. Nattino
Christoph Weniger
17
40
0
15 Nov 2021
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Alexander Aushev
Thong Tran
Henri Pesonen
Andrew Howes
Samuel Kaski
25
1
0
02 Nov 2021
Robot Learning from Randomized Simulations: A Review
Robot Learning from Randomized Simulations: A Review
Fabio Muratore
Fabio Ramos
Greg Turk
Wenhao Yu
Michael Gienger
Jan Peters
AI4CE
10
77
0
01 Nov 2021
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian
  parameter inference for partially observed stochastic processes
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
D. Warne
Thomas P. Prescott
Ruth Baker
Matthew J. Simpson
12
15
0
26 Oct 2021
A Trust Crisis In Simulation-Based Inference? Your Posterior
  Approximations Can Be Unfaithful
A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful
Joeri Hermans
Arnaud Delaunoy
François Rozet
Antoine Wehenkel
Volodimir Begy
Gilles Louppe
64
38
0
13 Oct 2021
Unifying Likelihood-free Inference with Black-box Optimization and
  Beyond
Unifying Likelihood-free Inference with Black-box Optimization and Beyond
Dinghuai Zhang
Jie Fu
Yoshua Bengio
Aaron Courville
29
13
0
06 Oct 2021
Arbitrary Marginal Neural Ratio Estimation for Simulation-based
  Inference
Arbitrary Marginal Neural Ratio Estimation for Simulation-based Inference
François Rozet
Gilles Louppe
63
6
0
01 Oct 2021
Simulation-based Bayesian inference for multi-fingered robotic grasping
Simulation-based Bayesian inference for multi-fingered robotic grasping
Norman Marlier
O. Bruls
Gilles Louppe
24
6
0
29 Sep 2021
Identification of Vehicle Dynamics Parameters Using Simulation-based
  Inference
Identification of Vehicle Dynamics Parameters Using Simulation-based Inference
Ali Boyali
S. Thompson
D. Wong
11
6
0
27 Aug 2021
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and
  Machine Learning for Reliable Simulator-Based Inference
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and Machine Learning for Reliable Simulator-Based Inference
Niccolò Dalmasso
Luca Masserano
David Y. Zhao
Rafael Izbicki
Ann B. Lee
16
5
0
08 Jul 2021
Truncated Marginal Neural Ratio Estimation
Truncated Marginal Neural Ratio Estimation
Benjamin Kurt Miller
A. Cole
Patrick Forré
Gilles Louppe
Christoph Weniger
22
37
0
02 Jul 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To
  Pyramidal Bayesian Models
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
22
2
0
23 Jun 2021
Deep Bayesian Active Learning for Accelerating Stochastic Simulation
Deep Bayesian Active Learning for Accelerating Stochastic Simulation
D. Wu
Ruijia Niu
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4CE
17
8
0
05 Jun 2021
MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
  Inference from Sampled Trajectories
MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood Inference from Sampled Trajectories
G. Isacchini
Natanael Spisak
Armita Nourmohammad
T. Mora
A. Walczak
20
0
0
03 Jun 2021
Gradient-based Bayesian Experimental Design for Implicit Models using
  Mutual Information Lower Bounds
Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds
Steven Kleinegesse
Michael U. Gutmann
FedML
17
25
0
10 May 2021
Fast ABC with joint generative modelling and subset simulation
Fast ABC with joint generative modelling and subset simulation
Eliane Maalouf
D. Ginsbourger
N. Linde
24
0
0
16 Apr 2021
Metropolis-Hastings via Classification
Metropolis-Hastings via Classification
Tetsuya Kaji
Veronika Rockova
15
8
0
06 Mar 2021
Inverse Gaussian Process regression for likelihood-free inference
Inverse Gaussian Process regression for likelihood-free inference
Hongqiao Wang
Ziqiao Ao
Tengchao Yu
Jinglai Li
15
1
0
21 Feb 2021
Neural Posterior Regularization for Likelihood-Free Inference
Neural Posterior Regularization for Likelihood-Free Inference
Dongjun Kim
Kyungwoo Song
Seung-Jae Shin
Wanmo Kang
Il-Chul Moon
Weonyoung Joo
15
1
0
15 Feb 2021
Sequential Neural Posterior and Likelihood Approximation
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
17
33
0
12 Feb 2021
Robust and integrative Bayesian neural networks for likelihood-free
  parameter inference
Robust and integrative Bayesian neural networks for likelihood-free parameter inference
Fredrik Wrede
Robin Eriksson
Richard M. Jiang
Linda R. Petzold
Stefan Engblom
A. Hellander
Prashant Singh
15
6
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
96
184
0
12 Jan 2021
Score Matched Neural Exponential Families for Likelihood-Free Inference
Score Matched Neural Exponential Families for Likelihood-Free Inference
Lorenzo Pacchiardi
Ritabrata Dutta
11
27
0
20 Dec 2020
Learning summary features of time series for likelihood free inference
Learning summary features of time series for likelihood free inference
Pedro L. C. Rodrigues
Alexandre Gramfort
AI4TS
23
4
0
04 Dec 2020
IV-Posterior: Inverse Value Estimation for Interpretable Policy
  Certificates
IV-Posterior: Inverse Value Estimation for Interpretable Policy Certificates
Tatiana Lopez-Guevara
Michael G. Burke
Nick K. Taylor
Kartic Subr
OffRL
8
0
0
30 Nov 2020
Simulation-efficient marginal posterior estimation with swyft: stop
  wasting your precious time
Simulation-efficient marginal posterior estimation with swyft: stop wasting your precious time
Benjamin Kurt Miller
A. Cole
Gilles Louppe
Christoph Weniger
11
19
0
27 Nov 2020
Solving high-dimensional parameter inference: marginal posterior
  densities & Moment Networks
Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks
N. Jeffrey
Benjamin Dan Wandelt
9
38
0
11 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its
  Applications to Simulation-Based Inference
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
10
27
0
11 Nov 2020
Previous
12345
Next