Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.07226
Cited By
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
18 May 2018
George Papamakarios
D. Sterratt
Iain Murray
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows"
50 / 202 papers shown
Title
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation
Arnaud Delaunoy
Joeri Hermans
François Rozet
Antoine Wehenkel
Gilles Louppe
15
30
0
29 Aug 2022
Adversarial Bayesian Simulation
YueXing Wang
Veronika Rovcková
GAN
BDL
19
5
0
25 Aug 2022
An Optimal Likelihood Free Method for Biological Model Selection
Vincent D. Zaballa
E. Hui
16
0
0
03 Aug 2022
On minimax density estimation via measure transport
Sven Wang
Youssef Marzouk
OT
16
19
0
20 Jul 2022
Neural Posterior Estimation with Differentiable Simulators
Justine Zeghal
F. Lanusse
Alexandre Boucaud
B. Remy
E. Aubourg
13
14
0
12 Jul 2022
Guided sequential ABC schemes for intractable Bayesian models
Umberto Picchini
M. Tamborrino
45
8
0
24 Jun 2022
Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport
Ricardo Baptista
Lianghao Cao
Joshua Chen
Omar Ghattas
Fengyi Li
Youssef M. Marzouk
J. Oden
16
11
0
22 Jun 2022
Calibrating Agent-based Models to Microdata with Graph Neural Networks
Joel Dyer
Patrick W Cannon
J. Farmer
Sebastian M. Schmon
25
11
0
15 Jun 2022
Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization
Lorenzo Pacchiardi
Ritabrata Dutta
TPM
BDL
UQCV
GAN
13
18
0
31 May 2022
Agent-based Simulation of District-based Elections
Adway Mitra
9
0
0
28 May 2022
On predictive inference for intractable models via approximate Bayesian computation
Marko Jarvenpaa
J. Corander
TPM
25
2
0
23 Mar 2022
Variational inference of fractional Brownian motion with linear computational complexity
Hippolyte Verdier
Franccois Laurent
Alhassan Cassé
Christian L. Vestergaard
Jean-Baptiste Masson
9
6
0
15 Mar 2022
GATSBI: Generative Adversarial Training for Simulation-Based Inference
Poornima Ramesh
Jan-Matthis Lueckmann
Jan Boelts
Álvaro Tejero-Cantero
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
GAN
31
33
0
12 Mar 2022
Variational methods for simulation-based inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
16
46
0
08 Mar 2022
Amortised Likelihood-free Inference for Expensive Time-series Simulators with Signatured Ratio Estimation
Joel Dyer
Patrick W Cannon
Sebastian M. Schmon
16
9
0
23 Feb 2022
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
18
42
0
09 Feb 2022
Black-box Bayesian inference for economic agent-based models
Joel Dyer
Patrick W Cannon
J. Farmer
Sebastian M. Schmon
11
23
0
01 Feb 2022
Learning Summary Statistics for Bayesian Inference with Autoencoders
Carlo Albert
S. Ulzega
Firat Ozdemir
F. Pérez-Cruz
Antonietta Mira
BDL
33
10
0
28 Jan 2022
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks
Marvin Schmitt
Paul-Christian Burkner
Ullrich Kothe
Stefan T. Radev
22
34
0
16 Dec 2021
Measuring the accuracy of likelihood-free inference
Aden Forrow
R. Baker
6
2
0
15 Dec 2021
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
22
31
0
25 Nov 2021
Approximate Bayesian Computation via Classification
Yuexi Wang
Tetsuya Kaji
Veronika Rockova
19
4
0
22 Nov 2021
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation
A. Cole
Benjamin Kurt Miller
S. Witte
Maxwell X. Cai
M. Grootes
F. Nattino
Christoph Weniger
17
40
0
15 Nov 2021
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Alexander Aushev
Thong Tran
Henri Pesonen
Andrew Howes
Samuel Kaski
25
1
0
02 Nov 2021
Robot Learning from Randomized Simulations: A Review
Fabio Muratore
Fabio Ramos
Greg Turk
Wenhao Yu
Michael Gienger
Jan Peters
AI4CE
10
77
0
01 Nov 2021
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
D. Warne
Thomas P. Prescott
Ruth Baker
Matthew J. Simpson
12
15
0
26 Oct 2021
A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful
Joeri Hermans
Arnaud Delaunoy
François Rozet
Antoine Wehenkel
Volodimir Begy
Gilles Louppe
64
38
0
13 Oct 2021
Unifying Likelihood-free Inference with Black-box Optimization and Beyond
Dinghuai Zhang
Jie Fu
Yoshua Bengio
Aaron Courville
29
13
0
06 Oct 2021
Arbitrary Marginal Neural Ratio Estimation for Simulation-based Inference
François Rozet
Gilles Louppe
63
6
0
01 Oct 2021
Simulation-based Bayesian inference for multi-fingered robotic grasping
Norman Marlier
O. Bruls
Gilles Louppe
24
6
0
29 Sep 2021
Identification of Vehicle Dynamics Parameters Using Simulation-based Inference
Ali Boyali
S. Thompson
D. Wong
11
6
0
27 Aug 2021
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and Machine Learning for Reliable Simulator-Based Inference
Niccolò Dalmasso
Luca Masserano
David Y. Zhao
Rafael Izbicki
Ann B. Lee
16
5
0
08 Jul 2021
Truncated Marginal Neural Ratio Estimation
Benjamin Kurt Miller
A. Cole
Patrick Forré
Gilles Louppe
Christoph Weniger
22
37
0
02 Jul 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
22
2
0
23 Jun 2021
Deep Bayesian Active Learning for Accelerating Stochastic Simulation
D. Wu
Ruijia Niu
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4CE
17
8
0
05 Jun 2021
MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood Inference from Sampled Trajectories
G. Isacchini
Natanael Spisak
Armita Nourmohammad
T. Mora
A. Walczak
20
0
0
03 Jun 2021
Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds
Steven Kleinegesse
Michael U. Gutmann
FedML
17
25
0
10 May 2021
Fast ABC with joint generative modelling and subset simulation
Eliane Maalouf
D. Ginsbourger
N. Linde
24
0
0
16 Apr 2021
Metropolis-Hastings via Classification
Tetsuya Kaji
Veronika Rockova
15
8
0
06 Mar 2021
Inverse Gaussian Process regression for likelihood-free inference
Hongqiao Wang
Ziqiao Ao
Tengchao Yu
Jinglai Li
15
1
0
21 Feb 2021
Neural Posterior Regularization for Likelihood-Free Inference
Dongjun Kim
Kyungwoo Song
Seung-Jae Shin
Wanmo Kang
Il-Chul Moon
Weonyoung Joo
15
1
0
15 Feb 2021
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
17
33
0
12 Feb 2021
Robust and integrative Bayesian neural networks for likelihood-free parameter inference
Fredrik Wrede
Robin Eriksson
Richard M. Jiang
Linda R. Petzold
Stefan Engblom
A. Hellander
Prashant Singh
15
6
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
96
184
0
12 Jan 2021
Score Matched Neural Exponential Families for Likelihood-Free Inference
Lorenzo Pacchiardi
Ritabrata Dutta
11
27
0
20 Dec 2020
Learning summary features of time series for likelihood free inference
Pedro L. C. Rodrigues
Alexandre Gramfort
AI4TS
23
4
0
04 Dec 2020
IV-Posterior: Inverse Value Estimation for Interpretable Policy Certificates
Tatiana Lopez-Guevara
Michael G. Burke
Nick K. Taylor
Kartic Subr
OffRL
8
0
0
30 Nov 2020
Simulation-efficient marginal posterior estimation with swyft: stop wasting your precious time
Benjamin Kurt Miller
A. Cole
Gilles Louppe
Christoph Weniger
11
19
0
27 Nov 2020
Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks
N. Jeffrey
Benjamin Dan Wandelt
9
38
0
11 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
10
27
0
11 Nov 2020
Previous
1
2
3
4
5
Next