Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.07226
Cited By
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
18 May 2018
George Papamakarios
D. Sterratt
Iain Murray
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows"
50 / 202 papers shown
Title
Neural Approximate Sufficient Statistics for Implicit Models
Yanzhi Chen
Dinghuai Zhang
Michael U. Gutmann
Aaron Courville
Zhanxing Zhu
11
79
0
20 Oct 2020
ABC-Di: Approximate Bayesian Computation for Discrete Data
I. Auzina
Jakub M. Tomczak
4
0
0
19 Oct 2020
Sequential Likelihood-Free Inference with Neural Proposal
Dongjun Kim
Kyungwoo Song
Yoon-Yeong Kim
Yongjin Shin
Wanmo Kang
Il-Chul Moon
Weonyoung Joo
11
2
0
15 Oct 2020
Error-guided likelihood-free MCMC
Volodimir Begy
Erich Schikuta
11
3
0
13 Oct 2020
Simulation-based inference methods for particle physics
Johann Brehmer
Kyle Cranmer
AI4CE
8
21
0
13 Oct 2020
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany
Stefan T. Radev
Frederik Graw
Simiao Chen
N. Mutters
V. Eichel
T. Bärnighausen
Ullrich Kothe
16
29
0
01 Oct 2020
Unifying supervised learning and VAEs -- coverage, systematics and goodness-of-fit in normalizing-flow based neural network models for astro-particle reconstructions
T. Glüsenkamp
6
1
0
13 Aug 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
13
19
0
10 Jul 2020
Transformations in Semi-Parametric Bayesian Synthetic Likelihood
Jacob W. Priddle
Christopher C. Drovandi
6
2
0
03 Jul 2020
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
11
10
0
18 Jun 2020
Graphical Normalizing Flows
Antoine Wehenkel
Gilles Louppe
TPM
BDL
8
36
0
03 Jun 2020
Fully probabilistic quasar continua predictions near Lyman-α with conditional neural spline flows
D. Reiman
John Tamanas
J. Prochaska
Dominika Ďurovčíková
10
6
0
31 May 2020
Amortized Bayesian model comparison with evidential deep learning
Stefan T. Radev
Marco D’Alessandro
U. Mertens
A. Voss
Ullrich Kothe
Paul-Christian Burkner
BDL
18
32
0
22 Apr 2020
Flows for simultaneous manifold learning and density estimation
Johann Brehmer
Kyle Cranmer
DRL
AI4CE
15
157
0
31 Mar 2020
Coping With Simulators That Don't Always Return
Andrew Warrington
Saeid Naderiparizi
Frank D. Wood
6
4
0
28 Mar 2020
Sequential Bayesian Experimental Design for Implicit Models via Mutual Information
Steven Kleinegesse
Christopher C. Drovandi
Michael U. Gutmann
6
28
0
20 Mar 2020
BayesFlow: Learning complex stochastic models with invertible neural networks
Stefan T. Radev
U. Mertens
A. Voss
Lynton Ardizzone
Ullrich Kothe
BDL
9
182
0
13 Mar 2020
Confidence Sets and Hypothesis Testing in a Likelihood-Free Inference Setting
Niccolò Dalmasso
Rafael Izbicki
Ann B. Lee
9
20
0
24 Feb 2020
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Steven Kleinegesse
Michael U. Gutmann
14
64
0
19 Feb 2020
Black-Box Optimization with Local Generative Surrogates
S. Shirobokov
V. Belavin
Michael Kagan
Andrey Ustyuzhanin
A. G. Baydin
6
3
0
11 Feb 2020
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
34
117
0
10 Feb 2020
Probabilistic Software Modeling: A Data-driven Paradigm for Software Analysis
Hannes Thaller
L. Linsbauer
Rudolf Ramler
Alexander Egyed
16
3
0
17 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
11
1,618
0
05 Dec 2019
The frontier of simulation-based inference
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
13
820
0
04 Nov 2019
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDL
DRL
8
44
0
29 Oct 2019
Batch simulations and uncertainty quantification in Gaussian process surrogate approximate Bayesian computation
Marko Jarvenpaa
Aki Vehtari
Pekka Marttinen
15
15
0
14 Oct 2019
Distilling Importance Sampling for Likelihood Free Inference
D. Prangle
Cecilia Viscardi
11
3
0
08 Oct 2019
Inference of a mesoscopic population model from population spike trains
M. Slawski
A. Longtin
E. Ben-David
11
12
0
03 Oct 2019
A review of Approximate Bayesian Computation methods via density estimation: inference for simulator-models
C. Grazian
Yanan Fan
TPM
11
22
0
06 Sep 2019
Mining for Dark Matter Substructure: Inferring subhalo population properties from strong lenses with machine learning
Johann Brehmer
S. Mishra-Sharma
Joeri Hermans
Gilles Louppe
Kyle Cranmer
13
72
0
04 Sep 2019
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
14
14
0
26 Aug 2019
Modeling the Gaia Color-Magnitude Diagram with Bayesian Neural Flows to Constrain Distance Estimates
M. Cranmer
Richard Galvez
L. Anderson
D. Spergel
S. Ho
14
7
0
21 Aug 2019
Unconstrained Monotonic Neural Networks
Antoine Wehenkel
Gilles Louppe
TPM
18
146
0
14 Aug 2019
MadMiner: Machine learning-based inference for particle physics
Johann Brehmer
F. Kling
Irina Espejo
Kyle Cranmer
19
111
0
24 Jul 2019
Black-Box Inference for Non-Linear Latent Force Models
W. Ward
Tom Ryder
D. Prangle
Mauricio A. Alvarez
DRL
16
14
0
21 Jun 2019
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
19
739
0
10 Jun 2019
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
40
57
0
05 Jun 2019
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
10
14
0
04 Jun 2019
Validation of Approximate Likelihood and Emulator Models for Computationally Intensive Simulations
Niccolò Dalmasso
Ann B. Lee
Rafael Izbicki
T. Pospisil
Ilmun Kim
Chieh-An Lin
11
8
0
27 May 2019
Real-time Approximate Bayesian Computation for Scene Understanding
J. Felip
Nilesh A. Ahuja
D. Gómez‐Gutiérrez
Omesh Tickoo
Vikash K. Mansinghka
6
1
0
22 May 2019
Automatic Posterior Transformation for Likelihood-Free Inference
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
6
316
0
17 May 2019
Autoregressive Energy Machines
C. Nash
Conor Durkan
12
55
0
11 Apr 2019
Robust Approximate Bayesian Inference with Synthetic Likelihood
David T. Frazier
Christopher C. Drovandi
16
44
0
09 Apr 2019
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans
Volodimir Begy
Gilles Louppe
17
20
0
10 Mar 2019
Sequential Neural Methods for Likelihood-free Inference
Conor Durkan
George Papamakarios
Iain Murray
BDL
23
24
0
21 Nov 2018
Likelihood-free inference with an improved cross-entropy estimator
M. Stoye
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
FedML
UQCV
BDL
20
48
0
02 Aug 2018
Accelerating delayed-acceptance Markov chain Monte Carlo algorithms
Samuel Wiqvist
Umberto Picchini
J. Forman
Kresten Lindorff-Larsen
Wouter Boomsma
6
8
0
15 Jun 2018
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
12
178
0
30 May 2018
Likelihood-free inference with emulator networks
Jan-Matthis Lueckmann
Giacomo Bassetto
Theofanis Karaletsos
Jakob H. Macke
6
124
0
23 May 2018
An automatic adaptive method to combine summary statistics in approximate Bayesian computation
Jonathan U. Harrison
R. Baker
17
17
0
07 Mar 2017
Previous
1
2
3
4
5
Next