ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.09501
  4. Cited By
AutoAugment: Learning Augmentation Policies from Data

AutoAugment: Learning Augmentation Policies from Data

24 May 2018
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
ArXivPDFHTML

Papers citing "AutoAugment: Learning Augmentation Policies from Data"

50 / 256 papers shown
Title
Mind the Label Shift of Augmentation-based Graph OOD Generalization
Mind the Label Shift of Augmentation-based Graph OOD Generalization
Junchi Yu
Jian Liang
R. He
34
27
0
27 Mar 2023
A Bag-of-Prototypes Representation for Dataset-Level Applications
A Bag-of-Prototypes Representation for Dataset-Level Applications
Wei-Chih Tu
Weijian Deng
Tom Gedeon
Liang Zheng
38
9
0
23 Mar 2023
CUDA: Convolution-based Unlearnable Datasets
CUDA: Convolution-based Unlearnable Datasets
Vinu Sankar Sadasivan
Mahdi Soltanolkotabi
S. Feizi
MU
29
23
0
07 Mar 2023
DART: Diversify-Aggregate-Repeat Training Improves Generalization of
  Neural Networks
DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks
Samyak Jain
Sravanti Addepalli
P. Sahu
Priyam Dey
R. Venkatesh Babu
MoMe
OOD
35
20
0
28 Feb 2023
Data Augmentation for Neural NLP
Data Augmentation for Neural NLP
Domagoj Pluscec
Jan Snajder
6
6
0
22 Feb 2023
Steerable Equivariant Representation Learning
Steerable Equivariant Representation Learning
Sangnie Bhardwaj
Willie McClinton
Tongzhou Wang
Guillaume Lajoie
Chen Sun
Phillip Isola
Dilip Krishnan
OOD
LLMSV
26
5
0
22 Feb 2023
Learning Prototype Classifiers for Long-Tailed Recognition
Learning Prototype Classifiers for Long-Tailed Recognition
Saurabh Sharma
Yongqin Xian
Ning Yu
Ambuj K. Singh
19
13
0
01 Feb 2023
Benchmarking Robustness to Adversarial Image Obfuscations
Benchmarking Robustness to Adversarial Image Obfuscations
Florian Stimberg
Ayan Chakrabarti
Chun-Ta Lu
Hussein Hazimeh
Otilia Stretcu
...
Merve Kaya
Cyrus Rashtchian
Ariel Fuxman
Mehmet Tek
Sven Gowal
AAML
24
10
0
30 Jan 2023
CADA-GAN: Context-Aware GAN with Data Augmentation
CADA-GAN: Context-Aware GAN with Data Augmentation
Sofie Daniels
Jiugeng Sun
Jiaqing Xie
28
0
0
21 Jan 2023
Efficient Activation Function Optimization through Surrogate Modeling
Efficient Activation Function Optimization through Surrogate Modeling
G. Bingham
Risto Miikkulainen
16
2
0
13 Jan 2023
Unlearnable Clusters: Towards Label-agnostic Unlearnable Examples
Unlearnable Clusters: Towards Label-agnostic Unlearnable Examples
Jiaming Zhang
Xingjun Ma
Qiaomin Yi
Jitao Sang
Yugang Jiang
Yaowei Wang
Changsheng Xu
13
24
0
31 Dec 2022
Self Meta Pseudo Labels: Meta Pseudo Labels Without The Teacher
Self Meta Pseudo Labels: Meta Pseudo Labels Without The Teacher
Kei-Sing Ng
Qingchen Wang
VLM
10
1
0
27 Dec 2022
Augmentation Matters: A Simple-yet-Effective Approach to Semi-supervised
  Semantic Segmentation
Augmentation Matters: A Simple-yet-Effective Approach to Semi-supervised Semantic Segmentation
Zhen Zhao
Lihe Yang
Sifan Long
Jimin Pi
Luping Zhou
Jingdong Wang
18
72
0
09 Dec 2022
Expeditious Saliency-guided Mix-up through Random Gradient Thresholding
Expeditious Saliency-guided Mix-up through Random Gradient Thresholding
Minh-Long Luu
Zeyi Huang
Eric P. Xing
Yong Jae Lee
Haohan Wang
AAML
21
1
0
09 Dec 2022
Addressing Distribution Shift at Test Time in Pre-trained Language
  Models
Addressing Distribution Shift at Test Time in Pre-trained Language Models
Ayush Singh
J. Ortega
VLM
6
4
0
05 Dec 2022
AdvMask: A Sparse Adversarial Attack Based Data Augmentation Method for
  Image Classification
AdvMask: A Sparse Adversarial Attack Based Data Augmentation Method for Image Classification
Suorong Yang
Jinqiao Li
Jian Zhao
S. Furao
AAML
17
6
0
29 Nov 2022
Teaching Structured Vision&Language Concepts to Vision&Language Models
Teaching Structured Vision&Language Concepts to Vision&Language Models
Sivan Doveh
Assaf Arbelle
Sivan Harary
Rameswar Panda
Roei Herzig
...
Donghyun Kim
Raja Giryes
Rogerio Feris
S. Ullman
Leonid Karlinsky
VLM
CoGe
48
70
0
21 Nov 2022
Unveiling the Tapestry: the Interplay of Generalization and Forgetting
  in Continual Learning
Unveiling the Tapestry: the Interplay of Generalization and Forgetting in Continual Learning
Zenglin Shi
Jing Jie
Ying Sun
J. Lim
Mengmi Zhang
CLL
32
1
0
21 Nov 2022
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory
Justin Cui
Ruochen Wang
Si Si
Cho-Jui Hsieh
DD
20
129
0
19 Nov 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
21
60
0
17 Nov 2022
RepGhost: A Hardware-Efficient Ghost Module via Re-parameterization
RepGhost: A Hardware-Efficient Ghost Module via Re-parameterization
Chengpeng Chen
Zichao Guo
Haien Zeng
Pengfei Xiong
Jian Dong
16
37
0
11 Nov 2022
Extending Temporal Data Augmentation for Video Action Recognition
Extending Temporal Data Augmentation for Video Action Recognition
Artjoms Gorpincenko
Michal Mackiewicz
ViT
13
4
0
09 Nov 2022
Cold Start Streaming Learning for Deep Networks
Cold Start Streaming Learning for Deep Networks
Cameron R. Wolfe
Anastasios Kyrillidis
CLL
15
2
0
09 Nov 2022
Adversarial Auto-Augment with Label Preservation: A Representation
  Learning Principle Guided Approach
Adversarial Auto-Augment with Label Preservation: A Representation Learning Principle Guided Approach
Kaiwen Yang
Yanchao Sun
Jiahao Su
Fengxiang He
Xinmei Tian
Furong Huang
Tianyi Zhou
Dacheng Tao
25
13
0
02 Nov 2022
LidarAugment: Searching for Scalable 3D LiDAR Data Augmentations
LidarAugment: Searching for Scalable 3D LiDAR Data Augmentations
Zhaoqi Leng
Guowang Li
Chenxi Liu
E. D. Cubuk
Pei Sun
Tong He
Drago Anguelov
Mingxing Tan
3DPC
33
9
0
24 Oct 2022
How Much Data Are Augmentations Worth? An Investigation into Scaling
  Laws, Invariance, and Implicit Regularization
How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization
Jonas Geiping
Micah Goldblum
Gowthami Somepalli
Ravid Shwartz-Ziv
Tom Goldstein
A. Wilson
21
35
0
12 Oct 2022
DreamShard: Generalizable Embedding Table Placement for Recommender
  Systems
DreamShard: Generalizable Embedding Table Placement for Recommender Systems
Daochen Zha
Louis Feng
Qiaoyu Tan
Zirui Liu
Kwei-Herng Lai
Bhargav Bhushanam
Yuandong Tian
A. Kejariwal
Xia Hu
LMTD
OffRL
15
28
0
05 Oct 2022
MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision
  Models
MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision Models
Chenglin Yang
Siyuan Qiao
Qihang Yu
Xiaoding Yuan
Yukun Zhu
Alan Yuille
Hartwig Adam
Liang-Chieh Chen
ViT
MoE
24
58
0
04 Oct 2022
Augmentation Backdoors
Augmentation Backdoors
J. Rance
Yiren Zhao
Ilia Shumailov
Robert D. Mullins
AAML
SILM
38
7
0
29 Sep 2022
Automatic Data Augmentation via Invariance-Constrained Learning
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
18
10
0
29 Sep 2022
Effective Vision Transformer Training: A Data-Centric Perspective
Effective Vision Transformer Training: A Data-Centric Perspective
Benjia Zhou
Pichao Wang
Jun Wan
Yan-Ni Liang
Fan Wang
24
5
0
29 Sep 2022
Semi-Supervised and Unsupervised Deep Visual Learning: A Survey
Semi-Supervised and Unsupervised Deep Visual Learning: A Survey
Yanbei Chen
Massimiliano Mancini
Xiatian Zhu
Zeynep Akata
30
113
0
24 Aug 2022
Achieving Fairness in Dermatological Disease Diagnosis through Automatic
  Weight Adjusting Federated Learning and Personalization
Achieving Fairness in Dermatological Disease Diagnosis through Automatic Weight Adjusting Federated Learning and Personalization
Gelei Xu
Yawen Wu
Jingtong Hu
Yiyu Shi
FedML
17
2
0
23 Aug 2022
PoseTrans: A Simple Yet Effective Pose Transformation Augmentation for
  Human Pose Estimation
PoseTrans: A Simple Yet Effective Pose Transformation Augmentation for Human Pose Estimation
Wentao Jiang
Sheng Jin
Wentao Liu
Chao Qian
Ping Luo
Sishuo Liu
ViT
30
23
0
16 Aug 2022
RenyiCL: Contrastive Representation Learning with Skew Renyi Divergence
RenyiCL: Contrastive Representation Learning with Skew Renyi Divergence
Kyungmin Lee
Jinwoo Shin
SSL
DRL
22
10
0
12 Aug 2022
Exploring the Design of Adaptation Protocols for Improved Generalization
  and Machine Learning Safety
Exploring the Design of Adaptation Protocols for Improved Generalization and Machine Learning Safety
Puja Trivedi
Danai Koutra
Jayaraman J. Thiagarajan
AAML
18
0
0
26 Jul 2022
Learn From All: Erasing Attention Consistency for Noisy Label Facial
  Expression Recognition
Learn From All: Erasing Attention Consistency for Noisy Label Facial Expression Recognition
Yuhang Zhang
Chengrui Wang
Xu Ling
Weihong Deng
19
136
0
21 Jul 2022
Negative Samples are at Large: Leveraging Hard-distance Elastic Loss for
  Re-identification
Negative Samples are at Large: Leveraging Hard-distance Elastic Loss for Re-identification
Hyungtae Lee
Sungmin Eum
H. Kwon
VLM
15
4
0
20 Jul 2022
DC-BENCH: Dataset Condensation Benchmark
DC-BENCH: Dataset Condensation Benchmark
Justin Cui
Ruochen Wang
Si Si
Cho-Jui Hsieh
DD
29
71
0
20 Jul 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
49
71
0
19 Jul 2022
TokenMix: Rethinking Image Mixing for Data Augmentation in Vision
  Transformers
TokenMix: Rethinking Image Mixing for Data Augmentation in Vision Transformers
Jihao Liu
B. Liu
Hang Zhou
Hongsheng Li
Yu Liu
ViT
8
66
0
18 Jul 2022
On the Strong Correlation Between Model Invariance and Generalization
On the Strong Correlation Between Model Invariance and Generalization
Weijian Deng
Stephen Gould
Liang Zheng
OOD
22
15
0
14 Jul 2022
Large-scale Robustness Analysis of Video Action Recognition Models
Large-scale Robustness Analysis of Video Action Recognition Models
Madeline Chantry Schiappa
Naman Biyani
Prudvi Kamtam
Shruti Vyas
Hamid Palangi
Vibhav Vineet
Y. S. Rawat
AAML
24
24
0
04 Jul 2022
Removing Batch Normalization Boosts Adversarial Training
Removing Batch Normalization Boosts Adversarial Training
Haotao Wang
Aston Zhang
Shuai Zheng
Xingjian Shi
Mu Li
Zhangyang Wang
29
41
0
04 Jul 2022
When Does Re-initialization Work?
When Does Re-initialization Work?
Sheheryar Zaidi
Tudor Berariu
Hyunjik Kim
J. Bornschein
Claudia Clopath
Yee Whye Teh
Razvan Pascanu
30
10
0
20 Jun 2022
All Mistakes Are Not Equal: Comprehensive Hierarchy Aware Multi-label
  Predictions (CHAMP)
All Mistakes Are Not Equal: Comprehensive Hierarchy Aware Multi-label Predictions (CHAMP)
A. Vaswani
Gaurav Aggarwal
Praneeth Netrapalli
N. Hegde
14
4
0
17 Jun 2022
ReSmooth: Detecting and Utilizing OOD Samples when Training with Data
  Augmentation
ReSmooth: Detecting and Utilizing OOD Samples when Training with Data Augmentation
Chenyang Wang
Junjun Jiang
Xiong Zhou
Xianming Liu
25
3
0
25 May 2022
Vision Transformers in 2022: An Update on Tiny ImageNet
Vision Transformers in 2022: An Update on Tiny ImageNet
Ethan Huynh
ViT
26
11
0
21 May 2022
Masterful: A Training Platform for Computer Vision Models
Masterful: A Training Platform for Computer Vision Models
S. Wookey
Yaoshiang Ho
Thomas D. Rikert
Juan David Gil Lopez
Juan Manuel Munoz Beancur
...
Ray Tawil
Aaron Sabin
Jack Lynch
Travis Harper
Nikhil Gajendrakumar
VLM
18
1
0
21 May 2022
A Comprehensive Survey of Few-shot Learning: Evolution, Applications,
  Challenges, and Opportunities
A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities
Yisheng Song
Ting-Yuan Wang
S. Mondal
J. P. Sahoo
SLR
36
342
0
13 May 2022
Previous
123456
Next