Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.09767
Cited By
Local SGD Converges Fast and Communicates Little
24 May 2018
Sebastian U. Stich
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Local SGD Converges Fast and Communicates Little"
50 / 629 papers shown
Title
Efficient Algorithms for Federated Saddle Point Optimization
Charlie Hou
K. K. Thekumparampil
Giulia Fanti
Sewoong Oh
FedML
18
23
0
12 Feb 2021
Stragglers Are Not Disaster: A Hybrid Federated Learning Algorithm with Delayed Gradients
Xingyu Li
Zhe Qu
Bo Tang
Zhuo Lu
FedML
65
31
0
12 Feb 2021
Energy-Harvesting Distributed Machine Learning
Başak Güler
Aylin Yener
FedML
21
15
0
10 Feb 2021
Local and Global Uniform Convexity Conditions
Thomas Kerdreux
Alexandre d’Aspremont
S. Pokutta
10
12
0
09 Feb 2021
Federated Deep AUC Maximization for Heterogeneous Data with a Constant Communication Complexity
Zhuoning Yuan
Zhishuai Guo
Yi Tian Xu
Yiming Ying
Tianbao Yang
FedML
13
35
0
09 Feb 2021
Adaptive Quantization of Model Updates for Communication-Efficient Federated Learning
Divyansh Jhunjhunwala
Advait Gadhikar
Gauri Joshi
Yonina C. Eldar
FedML
MQ
9
107
0
08 Feb 2021
Coordinating Momenta for Cross-silo Federated Learning
An Xu
Heng-Chiao Huang
FedML
13
19
0
08 Feb 2021
Multi-Tier Federated Learning for Vertically Partitioned Data
Anirban Das
S. Patterson
FedML
13
16
0
06 Feb 2021
Bias-Variance Reduced Local SGD for Less Heterogeneous Federated Learning
Tomoya Murata
Taiji Suzuki
FedML
16
50
0
05 Feb 2021
1-bit Adam: Communication Efficient Large-Scale Training with Adam's Convergence Speed
Hanlin Tang
Shaoduo Gan
A. A. Awan
Samyam Rajbhandari
Conglong Li
Xiangru Lian
Ji Liu
Ce Zhang
Yuxiong He
AI4CE
37
84
0
04 Feb 2021
A Bayesian Federated Learning Framework with Online Laplace Approximation
Liang Liu
Xi Jiang
Feng Zheng
Hong Chen
Guo-Jun Qi
Heng-Chiao Huang
Ling Shao
FedML
43
53
0
03 Feb 2021
Truly Sparse Neural Networks at Scale
Selima Curci
D. Mocanu
Mykola Pechenizkiy
25
19
0
02 Feb 2021
The Min-Max Complexity of Distributed Stochastic Convex Optimization with Intermittent Communication
Blake E. Woodworth
Brian Bullins
Ohad Shamir
Nathan Srebro
11
46
0
02 Feb 2021
Achieving Linear Speedup with Partial Worker Participation in Non-IID Federated Learning
Haibo Yang
Minghong Fang
Jia Liu
FedML
11
249
0
27 Jan 2021
Auto-weighted Robust Federated Learning with Corrupted Data Sources
Shenghui Li
Edith C. H. Ngai
Fanghua Ye
Thiemo Voigt
FedML
16
28
0
14 Jan 2021
Federated Learning over Noisy Channels: Convergence Analysis and Design Examples
Xizixiang Wei
Cong Shen
FedML
36
15
0
06 Jan 2021
Delayed Projection Techniques for Linearly Constrained Problems: Convergence Rates, Acceleration, and Applications
Xiang Li
Zhihua Zhang
22
4
0
05 Jan 2021
CADA: Communication-Adaptive Distributed Adam
Tianyi Chen
Ziye Guo
Yuejiao Sun
W. Yin
ODL
6
24
0
31 Dec 2020
Straggler-Resilient Federated Learning: Leveraging the Interplay Between Statistical Accuracy and System Heterogeneity
Amirhossein Reisizadeh
Isidoros Tziotis
Hamed Hassani
Aryan Mokhtari
Ramtin Pedarsani
FedML
164
98
0
28 Dec 2020
Cost-Effective Federated Learning Design
Bing Luo
Xiang Li
Shiqiang Wang
Jianwei Huang
Leandros Tassiulas
FedML
6
177
0
15 Dec 2020
Bandit-based Communication-Efficient Client Selection Strategies for Federated Learning
Yae Jee Cho
Samarth Gupta
Gauri Joshi
Osman Yağan
FedML
8
67
0
14 Dec 2020
Federated Learning under Importance Sampling
Elsa Rizk
Stefan Vlaski
A. H. Sayed
FedML
11
51
0
14 Dec 2020
DONE: Distributed Approximate Newton-type Method for Federated Edge Learning
Canh T. Dinh
N. H. Tran
Tuan Dung Nguyen
Wei Bao
A. R. Balef
B. Zhou
Albert Y. Zomaya
FedML
16
15
0
10 Dec 2020
Federated Learning in Unreliable and Resource-Constrained Cellular Wireless Networks
M. Salehi
E. Hossain
FedML
49
81
0
09 Dec 2020
Faster Non-Convex Federated Learning via Global and Local Momentum
Rudrajit Das
Anish Acharya
Abolfazl Hashemi
Sujay Sanghavi
Inderjit S. Dhillon
Ufuk Topcu
FedML
27
82
0
07 Dec 2020
Design and Analysis of Uplink and Downlink Communications for Federated Learning
Sihui Zheng
Cong Shen
Xiang Chen
28
139
0
07 Dec 2020
Second-Order Guarantees in Federated Learning
Stefan Vlaski
Elsa Rizk
A. H. Sayed
FedML
12
7
0
02 Dec 2020
Federated Composite Optimization
Honglin Yuan
Manzil Zaheer
Sashank J. Reddi
FedML
24
57
0
17 Nov 2020
FedRec: Federated Learning of Universal Receivers over Fading Channels
Mahdi Boloursaz Mashhadi
Nir Shlezinger
Yonina C. Eldar
Deniz Gunduz
FedML
6
15
0
14 Nov 2020
Distributed Sparse SGD with Majority Voting
Kerem Ozfatura
Emre Ozfatura
Deniz Gunduz
FedML
38
4
0
12 Nov 2020
Adaptive Federated Dropout: Improving Communication Efficiency and Generalization for Federated Learning
Nader Bouacida
Jiahui Hou
H. Zang
Xin Liu
FedML
9
75
0
08 Nov 2020
Communication-efficient Decentralized Local SGD over Undirected Networks
Tiancheng Qin
S. Rasoul Etesami
César A. Uribe
FedML
14
14
0
06 Nov 2020
FederBoost: Private Federated Learning for GBDT
Zhihua Tian
Rui Zhang
Xiaoyang Hou
Jian-wei Liu
K. Ren
Jian Liu
Kui Ren
FedML
AI4CE
39
66
0
05 Nov 2020
LQR with Tracking: A Zeroth-order Approach and Its Global Convergence
Zhaolin Ren
Aoxiao Zhong
Na Li
9
3
0
03 Nov 2020
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
28
108
0
03 Nov 2020
Accordion: Adaptive Gradient Communication via Critical Learning Regime Identification
Saurabh Agarwal
Hongyi Wang
Kangwook Lee
Shivaram Venkataraman
Dimitris Papailiopoulos
34
25
0
29 Oct 2020
Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Quoc Tran-Dinh
Phuong Ha Nguyen
FedML
34
10
0
27 Oct 2020
Optimal Client Sampling for Federated Learning
Wenlin Chen
Samuel Horváth
Peter Richtárik
FedML
19
190
0
26 Oct 2020
Demystifying Why Local Aggregation Helps: Convergence Analysis of Hierarchical SGD
Jiayi Wang
Shiqiang Wang
Rong-Rong Chen
Mingyue Ji
FedML
28
51
0
24 Oct 2020
Linearly Converging Error Compensated SGD
Eduard A. Gorbunov
D. Kovalev
Dmitry Makarenko
Peter Richtárik
163
77
0
23 Oct 2020
Hierarchical Federated Learning through LAN-WAN Orchestration
Jinliang Yuan
Mengwei Xu
Xiao Ma
Ao Zhou
Xuanzhe Liu
Shangguang Wang
FedML
14
38
0
22 Oct 2020
Towards Tight Communication Lower Bounds for Distributed Optimisation
Dan Alistarh
Janne H. Korhonen
FedML
17
6
0
16 Oct 2020
Optimal Gradient Compression for Distributed and Federated Learning
Alyazeed Albasyoni
M. Safaryan
Laurent Condat
Peter Richtárik
FedML
6
60
0
07 Oct 2020
A Closer Look at Codistillation for Distributed Training
Shagun Sodhani
Olivier Delalleau
Mahmoud Assran
Koustuv Sinha
Nicolas Ballas
Michael G. Rabbat
19
8
0
06 Oct 2020
Client Selection in Federated Learning: Convergence Analysis and Power-of-Choice Selection Strategies
Yae Jee Cho
Jianyu Wang
Gauri Joshi
FedML
33
400
0
03 Oct 2020
Over-the-Air Federated Learning from Heterogeneous Data
Tomer Sery
Nir Shlezinger
Kobi Cohen
Yonina C. Eldar
FedML
9
194
0
27 Sep 2020
Adversarial Robustness through Bias Variance Decomposition: A New Perspective for Federated Learning
Yao Zhou
Jun Wu
Haixun Wang
Jingrui He
AAML
FedML
18
26
0
18 Sep 2020
HPSGD: Hierarchical Parallel SGD With Stale Gradients Featuring
Yuhao Zhou
Qing Ye
Hailun Zhang
Jiancheng Lv
3DH
12
0
0
06 Sep 2020
FedBE: Making Bayesian Model Ensemble Applicable to Federated Learning
Hong-You Chen
Wei-Lun Chao
FedML
14
255
0
04 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
19
0
0
26 Aug 2020
Previous
1
2
3
...
10
11
12
13
9
Next