ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.09767
  4. Cited By
Local SGD Converges Fast and Communicates Little

Local SGD Converges Fast and Communicates Little

24 May 2018
Sebastian U. Stich
    FedML
ArXivPDFHTML

Papers citing "Local SGD Converges Fast and Communicates Little"

29 / 629 papers shown
Title
Decentralized Deep Learning with Arbitrary Communication Compression
Decentralized Deep Learning with Arbitrary Communication Compression
Anastasia Koloskova
Tao R. Lin
Sebastian U. Stich
Martin Jaggi
FedML
15
232
0
22 Jul 2019
On the Convergence of FedAvg on Non-IID Data
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
15
2,275
0
04 Jul 2019
Faster Distributed Deep Net Training: Computation and Communication
  Decoupled Stochastic Gradient Descent
Faster Distributed Deep Net Training: Computation and Communication Decoupled Stochastic Gradient Descent
Shuheng Shen
Linli Xu
Jingchang Liu
Xianfeng Liang
Yifei Cheng
ODL
FedML
21
24
0
28 Jun 2019
Distributed Optimization for Over-Parameterized Learning
Distributed Optimization for Over-Parameterized Learning
Chi Zhang
Qianxiao Li
8
4
0
14 Jun 2019
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification,
  and Local Computations
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification, and Local Computations
Debraj Basu
Deepesh Data
C. Karakuş
Suhas Diggavi
MQ
11
400
0
06 Jun 2019
Distributed Training with Heterogeneous Data: Bridging Median- and
  Mean-Based Algorithms
Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms
Xiangyi Chen
Tiancong Chen
Haoran Sun
Zhiwei Steven Wu
Mingyi Hong
FedML
11
73
0
04 Jun 2019
Natural Compression for Distributed Deep Learning
Natural Compression for Distributed Deep Learning
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
21
150
0
27 May 2019
Fair Resource Allocation in Federated Learning
Fair Resource Allocation in Federated Learning
Tian Li
Maziar Sanjabi
Ahmad Beirami
Virginia Smith
FedML
14
781
0
25 May 2019
Memorized Sparse Backpropagation
Memorized Sparse Backpropagation
Zhiyuan Zhang
Pengcheng Yang
Xuancheng Ren
Qi Su
Xu Sun
11
13
0
24 May 2019
MATCHA: Speeding Up Decentralized SGD via Matching Decomposition
  Sampling
MATCHA: Speeding Up Decentralized SGD via Matching Decomposition Sampling
Jianyu Wang
Anit Kumar Sahu
Zhouyi Yang
Gauri Joshi
S. Kar
15
159
0
23 May 2019
On the Computation and Communication Complexity of Parallel SGD with
  Dynamic Batch Sizes for Stochastic Non-Convex Optimization
On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization
Hao Yu
R. L. Jin
10
50
0
10 May 2019
On the Linear Speedup Analysis of Communication Efficient Momentum SGD
  for Distributed Non-Convex Optimization
On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization
Hao Yu
R. L. Jin
Sen Yang
FedML
27
378
0
09 May 2019
SLSGD: Secure and Efficient Distributed On-device Machine Learning
SLSGD: Secure and Efficient Distributed On-device Machine Learning
Cong Xie
Oluwasanmi Koyejo
Indranil Gupta
FedML
14
14
0
16 Mar 2019
A Distributed Hierarchical SGD Algorithm with Sparse Global Reduction
A Distributed Hierarchical SGD Algorithm with Sparse Global Reduction
Fan Zhou
Guojing Cong
9
8
0
12 Mar 2019
Decentralized Stochastic Optimization and Gossip Algorithms with
  Compressed Communication
Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication
Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
FedML
14
501
0
01 Feb 2019
Machine Learning at the Wireless Edge: Distributed Stochastic Gradient
  Descent Over-the-Air
Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air
Mohammad Mohammadi Amiri
Deniz Gunduz
17
53
0
03 Jan 2019
Federated Optimization in Heterogeneous Networks
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
11
5,011
0
14 Dec 2018
Communication-Efficient Policy Gradient Methods for Distributed
  Reinforcement Learning
Communication-Efficient Policy Gradient Methods for Distributed Reinforcement Learning
Tianyi Chen
K. Zhang
G. Giannakis
Tamer Basar
OffRL
16
41
0
07 Dec 2018
Adaptive Communication Strategies to Achieve the Best Error-Runtime
  Trade-off in Local-Update SGD
Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD
Jianyu Wang
Gauri Joshi
FedML
17
231
0
19 Oct 2018
Distributed Learning over Unreliable Networks
Distributed Learning over Unreliable Networks
Chen Yu
Hanlin Tang
Cédric Renggli
S. Kassing
Ankit Singla
Dan Alistarh
Ce Zhang
Ji Liu
OOD
9
59
0
17 Oct 2018
Sparsified SGD with Memory
Sparsified SGD with Memory
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
25
737
0
20 Sep 2018
Cooperative SGD: A unified Framework for the Design and Analysis of
  Communication-Efficient SGD Algorithms
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
11
348
0
22 Aug 2018
Don't Use Large Mini-Batches, Use Local SGD
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
25
429
0
22 Aug 2018
Parallel Restarted SGD with Faster Convergence and Less Communication:
  Demystifying Why Model Averaging Works for Deep Learning
Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging Works for Deep Learning
Hao Yu
Sen Yang
Shenghuo Zhu
MoMe
FedML
22
594
0
17 Jul 2018
Communication Compression for Decentralized Training
Communication Compression for Decentralized Training
Hanlin Tang
Shaoduo Gan
Ce Zhang
Tong Zhang
Ji Liu
11
270
0
17 Mar 2018
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
278
2,888
0
15 Sep 2016
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
119
259
0
10 Dec 2012
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
99
570
0
08 Dec 2012
Optimal Distributed Online Prediction using Mini-Batches
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
168
683
0
07 Dec 2010
Previous
123...111213