ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.11328
  4. Cited By
Hamiltonian Variational Auto-Encoder
v1v2 (latest)

Hamiltonian Variational Auto-Encoder

29 May 2018
Anthony L. Caterini
Arnaud Doucet
Dino Sejdinovic
    BDLDRL
ArXiv (abs)PDFHTML

Papers citing "Hamiltonian Variational Auto-Encoder"

40 / 40 papers shown
Title
Bidirectional Variational Autoencoders
Bidirectional Variational Autoencoders
Bart Kosko
Olaoluwa Adigun
BDL
83
0
0
21 May 2025
Bayesian Computation in Deep Learning
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
114
0
0
25 Feb 2025
Low-Dimensional Representation-Driven TSK Fuzzy System for Feature Selection
Low-Dimensional Representation-Driven TSK Fuzzy System for Feature Selection
Qiong Liu
Mingjie Cai
Qingguo Li
81
0
0
22 Jan 2025
Improved Variational Inference in Discrete VAEs using Error Correcting Codes
Improved Variational Inference in Discrete VAEs using Error Correcting Codes
María Martínez-García
Grace Villacrés
David Mitchell
Pablo Martínez Olmos
DRL
94
0
0
10 Oct 2024
Deep Learning Approaches for Data Augmentation in Medical Imaging: A
  Review
Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review
Aghiles Kebaili
J. Lapuyade-Lahorgue
S. Ruan
MedIm
88
156
0
24 Jul 2023
One-Line-of-Code Data Mollification Improves Optimization of
  Likelihood-based Generative Models
One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models
Ba-Hien Tran
Giulio Franzese
Pietro Michiardi
Maurizio Filippone
DiffM
128
4
0
30 May 2023
Variational Inference for Longitudinal Data Using Normalizing Flows
Variational Inference for Longitudinal Data Using Normalizing Flows
Clément Chadebec
S. Allassonnière
BDLDRL
49
1
0
24 Mar 2023
Approaching Globally Optimal Energy Efficiency in Interference Networks
  via Machine Learning
Approaching Globally Optimal Energy Efficiency in Interference Networks via Machine Learning
Bile Peng
Karl-Ludwig Besser
Ramprasad Raghunath
Eduard Axel Jorswieck
38
2
0
25 Nov 2022
Optimization of Annealed Importance Sampling Hyperparameters
Optimization of Annealed Importance Sampling Hyperparameters
Shirin Goshtasbpour
Fernando Perez-Cruz
58
1
0
27 Sep 2022
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
93
24
0
15 Sep 2022
Langevin Diffusion Variational Inference
Langevin Diffusion Variational Inference
Tomas Geffner
Justin Domke
DiffM
75
24
0
16 Aug 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use
  Case
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
98
30
0
16 Jun 2022
Bayesian inference via sparse Hamiltonian flows
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
85
14
0
11 Mar 2022
Missing Data Imputation and Acquisition with Deep Hierarchical Models
  and Hamiltonian Monte Carlo
Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo
I. Peis
Chao Ma
José Miguel Hernández-Lobato
BDLDRL
88
15
0
09 Feb 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
79
13
0
22 Dec 2021
Auto-Encoding Score Distribution Regression for Action Quality
  Assessment
Auto-Encoding Score Distribution Regression for Action Quality Assessment
Boyu Zhang
Jiayuan Chen
Yinfei Xu
Hui Zhang
Xu Yang
Xin Geng
89
28
0
22 Nov 2021
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Greg Ver Steeg
Aram Galstyan
80
15
0
03 Nov 2021
Variational Marginal Particle Filters
Variational Marginal Particle Filters
Jinlin Lai
Justin Domke
Daniel Sheldon
92
9
0
30 Sep 2021
Differentiable Annealed Importance Sampling and the Perils of Gradient
  Noise
Differentiable Annealed Importance Sampling and the Perils of Gradient Noise
Guodong Zhang
Kyle Hsu
Jianing Li
Chelsea Finn
Roger C. Grosse
85
40
0
21 Jul 2021
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
Tomas Geffner
Justin Domke
86
36
0
08 Jul 2021
Monte Carlo Variational Auto-Encoders
Monte Carlo Variational Auto-Encoders
Achille Thin
Nikita Kotelevskii
Arnaud Doucet
Alain Durmus
Eric Moulines
Maxim Panov
BDLDRL
67
45
0
30 Jun 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
80
21
0
21 Jun 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
126
69
0
30 Apr 2021
Improving Actor-Critic Reinforcement Learning via Hamiltonian Monte
  Carlo Method
Improving Actor-Critic Reinforcement Learning via Hamiltonian Monte Carlo Method
Duo Xu
Faramarz Fekri
58
8
0
22 Mar 2021
Learning Proposals for Probabilistic Programs with Inference Combinators
Learning Proposals for Probabilistic Programs with Inference Combinators
Sam Stites
Heiko Zimmermann
Hao Wu
Eli Sennesh
Jan-Willem van de Meent
NAI
84
16
0
01 Mar 2021
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Yangjun Ruan
Karen Ullrich
Daniel de Souza Severo
James Townsend
Ashish Khisti
Arnaud Doucet
Alireza Makhzani
Chris J. Maddison
101
25
0
22 Feb 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
93
78
0
15 Feb 2021
Factor Analysis, Probabilistic Principal Component Analysis, Variational
  Inference, and Variational Autoencoder: Tutorial and Survey
Factor Analysis, Probabilistic Principal Component Analysis, Variational Inference, and Variational Autoencoder: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
DRL
52
37
0
04 Jan 2021
Measure Transport with Kernel Stein Discrepancy
Measure Transport with Kernel Stein Discrepancy
Matthew A. Fisher
T. Nolan
Matthew M. Graham
D. Prangle
Chris J. Oates
OT
124
15
0
22 Oct 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
84
16
0
22 Oct 2020
Quasi-symplectic Langevin Variational Autoencoder
Quasi-symplectic Langevin Variational Autoencoder
Zihao Wang
H. Delingette
BDLDRL
73
4
0
02 Sep 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
73
20
0
10 Jul 2020
All in the Exponential Family: Bregman Duality in Thermodynamic
  Variational Inference
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference
Rob Brekelmans
Vaden Masrani
Frank Wood
Greg Ver Steeg
Aram Galstyan
57
16
0
01 Jul 2020
MetFlow: A New Efficient Method for Bridging the Gap between Markov
  Chain Monte Carlo and Variational Inference
MetFlow: A New Efficient Method for Bridging the Gap between Markov Chain Monte Carlo and Variational Inference
Achille Thin
Nikita Kotelevskii
Jean-Stanislas Denain
Léo Grinsztajn
Alain Durmus
Maxim Panov
Eric Moulines
BDL
55
17
0
27 Feb 2020
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Hao Wu
Heiko Zimmermann
Eli Sennesh
T. Le
Jan-Willem van de Meent
53
7
0
04 Nov 2019
Variational Integrator Networks for Physically Structured Embeddings
Variational Integrator Networks for Physically Structured Embeddings
Steindór Sæmundsson
Alexander Terenin
Katja Hofmann
M. Deisenroth
GNNAI4CE
81
50
0
21 Oct 2019
Learning Symmetries of Classical Integrable Systems
Learning Symmetries of Classical Integrable Systems
Roberto Bondesan
A. Lamacraft
80
40
0
11 Jun 2019
Exponential Family Estimation via Adversarial Dynamics Embedding
Exponential Family Estimation via Adversarial Dynamics Embedding
Bo Dai
Ziqiang Liu
H. Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
82
53
0
27 Apr 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural
  Transport
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
73
108
0
09 Mar 2019
Ergodic Inference: Accelerate Convergence by Optimisation
Ergodic Inference: Accelerate Convergence by Optimisation
Yichuan Zhang
José Miguel Hernández-Lobato
BDL
77
9
0
25 May 2018
1