Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.11328
Cited By
v1
v2 (latest)
Hamiltonian Variational Auto-Encoder
29 May 2018
Anthony L. Caterini
Arnaud Doucet
Dino Sejdinovic
BDL
DRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Hamiltonian Variational Auto-Encoder"
40 / 40 papers shown
Title
Bidirectional Variational Autoencoders
Bart Kosko
Olaoluwa Adigun
BDL
83
0
0
21 May 2025
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
114
0
0
25 Feb 2025
Low-Dimensional Representation-Driven TSK Fuzzy System for Feature Selection
Qiong Liu
Mingjie Cai
Qingguo Li
81
0
0
22 Jan 2025
Improved Variational Inference in Discrete VAEs using Error Correcting Codes
María Martínez-García
Grace Villacrés
David Mitchell
Pablo Martínez Olmos
DRL
94
0
0
10 Oct 2024
Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review
Aghiles Kebaili
J. Lapuyade-Lahorgue
S. Ruan
MedIm
88
157
0
24 Jul 2023
One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models
Ba-Hien Tran
Giulio Franzese
Pietro Michiardi
Maurizio Filippone
DiffM
128
4
0
30 May 2023
Variational Inference for Longitudinal Data Using Normalizing Flows
Clément Chadebec
S. Allassonnière
BDL
DRL
49
1
0
24 Mar 2023
Approaching Globally Optimal Energy Efficiency in Interference Networks via Machine Learning
Bile Peng
Karl-Ludwig Besser
Ramprasad Raghunath
Eduard Axel Jorswieck
38
2
0
25 Nov 2022
Optimization of Annealed Importance Sampling Hyperparameters
Shirin Goshtasbpour
Fernando Perez-Cruz
58
1
0
27 Sep 2022
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
93
24
0
15 Sep 2022
Langevin Diffusion Variational Inference
Tomas Geffner
Justin Domke
DiffM
75
24
0
16 Aug 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
98
30
0
16 Jun 2022
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
85
14
0
11 Mar 2022
Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo
I. Peis
Chao Ma
José Miguel Hernández-Lobato
BDL
DRL
88
15
0
09 Feb 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
79
13
0
22 Dec 2021
Auto-Encoding Score Distribution Regression for Action Quality Assessment
Boyu Zhang
Jiayuan Chen
Yinfei Xu
Hui Zhang
Xu Yang
Xin Geng
89
28
0
22 Nov 2021
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Greg Ver Steeg
Aram Galstyan
80
15
0
03 Nov 2021
Variational Marginal Particle Filters
Jinlin Lai
Justin Domke
Daniel Sheldon
92
9
0
30 Sep 2021
Differentiable Annealed Importance Sampling and the Perils of Gradient Noise
Guodong Zhang
Kyle Hsu
Jianing Li
Chelsea Finn
Roger C. Grosse
85
40
0
21 Jul 2021
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
Tomas Geffner
Justin Domke
95
36
0
08 Jul 2021
Monte Carlo Variational Auto-Encoders
Achille Thin
Nikita Kotelevskii
Arnaud Doucet
Alain Durmus
Eric Moulines
Maxim Panov
BDL
DRL
67
45
0
30 Jun 2021
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
80
21
0
21 Jun 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
126
69
0
30 Apr 2021
Improving Actor-Critic Reinforcement Learning via Hamiltonian Monte Carlo Method
Duo Xu
Faramarz Fekri
58
8
0
22 Mar 2021
Learning Proposals for Probabilistic Programs with Inference Combinators
Sam Stites
Heiko Zimmermann
Hao Wu
Eli Sennesh
Jan-Willem van de Meent
NAI
84
16
0
01 Mar 2021
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Yangjun Ruan
Karen Ullrich
Daniel de Souza Severo
James Townsend
Ashish Khisti
Arnaud Doucet
Alireza Makhzani
Chris J. Maddison
101
25
0
22 Feb 2021
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
93
78
0
15 Feb 2021
Factor Analysis, Probabilistic Principal Component Analysis, Variational Inference, and Variational Autoencoder: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
DRL
52
37
0
04 Jan 2021
Measure Transport with Kernel Stein Discrepancy
Matthew A. Fisher
T. Nolan
Matthew M. Graham
D. Prangle
Chris J. Oates
OT
124
15
0
22 Oct 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
84
16
0
22 Oct 2020
Quasi-symplectic Langevin Variational Autoencoder
Zihao Wang
H. Delingette
BDL
DRL
73
4
0
02 Sep 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
73
20
0
10 Jul 2020
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference
Rob Brekelmans
Vaden Masrani
Frank Wood
Greg Ver Steeg
Aram Galstyan
57
16
0
01 Jul 2020
MetFlow: A New Efficient Method for Bridging the Gap between Markov Chain Monte Carlo and Variational Inference
Achille Thin
Nikita Kotelevskii
Jean-Stanislas Denain
Léo Grinsztajn
Alain Durmus
Maxim Panov
Eric Moulines
BDL
55
17
0
27 Feb 2020
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Hao Wu
Heiko Zimmermann
Eli Sennesh
T. Le
Jan-Willem van de Meent
53
7
0
04 Nov 2019
Variational Integrator Networks for Physically Structured Embeddings
Steindór Sæmundsson
Alexander Terenin
Katja Hofmann
M. Deisenroth
GNN
AI4CE
86
50
0
21 Oct 2019
Learning Symmetries of Classical Integrable Systems
Roberto Bondesan
A. Lamacraft
80
40
0
11 Jun 2019
Exponential Family Estimation via Adversarial Dynamics Embedding
Bo Dai
Ziqiang Liu
H. Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
82
53
0
27 Apr 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
73
108
0
09 Mar 2019
Ergodic Inference: Accelerate Convergence by Optimisation
Yichuan Zhang
José Miguel Hernández-Lobato
BDL
77
9
0
25 May 2018
1