Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.11783
Cited By
To Trust Or Not To Trust A Classifier
30 May 2018
Heinrich Jiang
Been Kim
Melody Y. Guan
Maya R. Gupta
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"To Trust Or Not To Trust A Classifier"
14 / 64 papers shown
Title
The Right Tool for the Job: Matching Model and Instance Complexities
Roy Schwartz
Gabriel Stanovsky
Swabha Swayamdipta
Jesse Dodge
Noah A. Smith
33
167
0
16 Apr 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
19
220
0
16 Mar 2020
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Bo-wen Li
P. Varshney
D. Song
AAML
28
47
0
16 Mar 2020
Real-time Out-of-distribution Detection in Learning-Enabled Cyber-Physical Systems
Feiyang Cai
X. Koutsoukos
OODD
121
73
0
28 Jan 2020
Distance-Based Learning from Errors for Confidence Calibration
Chen Xing
Sercan Ö. Arik
Zizhao Zhang
Tomas Pfister
FedML
18
39
0
03 Dec 2019
Addressing Failure Prediction by Learning Model Confidence
Charles Corbière
Nicolas Thome
Avner Bar-Hen
Matthieu Cord
P. Pérez
19
281
0
01 Oct 2019
Density estimation in representation space to predict model uncertainty
Tiago Ramalho
M. Corbalan
UQCV
BDL
8
37
0
20 Aug 2019
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
11
378
0
03 Jul 2019
Detecting Adversarial Examples and Other Misclassifications in Neural Networks by Introspection
Jonathan Aigrain
Marcin Detyniecki
AAML
14
30
0
22 May 2019
Tutorial: Safe and Reliable Machine Learning
S. Saria
Adarsh Subbaswamy
FaML
25
82
0
15 Apr 2019
Visual Entailment: A Novel Task for Fine-Grained Image Understanding
Ning Xie
Farley Lai
Derek Doran
Asim Kadav
CoGe
31
321
0
20 Jan 2019
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural Networks against Adversarial Malware Samples
Deqiang Li
Ramesh Baral
Tao Li
Han Wang
Qianmu Li
Shouhuai Xu
AAML
17
21
0
18 Sep 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
Previous
1
2