Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.11973
Cited By
MolGAN: An implicit generative model for small molecular graphs
30 May 2018
Nicola De Cao
Thomas Kipf
GNN
GAN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MolGAN: An implicit generative model for small molecular graphs"
40 / 140 papers shown
Title
A Deep Generative Model for Molecule Optimization via One Fragment Modification
Ziqi Chen
Martin Renqiang Min
S. Parthasarathy
Xia Ning
21
61
0
08 Dec 2020
Symmetry-Aware Actor-Critic for 3D Molecular Design
G. Simm
Robert Pinsler
Gábor Csányi
José Miguel Hernández-Lobato
AI4CE
26
64
0
25 Nov 2020
Computing Graph Neural Networks: A Survey from Algorithms to Accelerators
S. Abadal
Akshay Jain
Robert Guirado
Jorge López-Alonso
Eduard Alarcón
GNN
27
225
0
30 Sep 2020
Scaffold-constrained molecular generation
Maxime Langevin
H. Minoux
M. Levesque
M. Bianciotto
15
45
0
15 Sep 2020
A Systematic Survey on Deep Generative Models for Graph Generation
Xiaojie Guo
Liang Zhao
MedIm
44
147
0
13 Jul 2020
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
Chengxi Zang
Fei-Yue Wang
BDL
14
280
0
17 Jun 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
30
83
0
18 May 2020
Autonomous discovery in the chemical sciences part II: Outlook
Connor W. Coley
Natalie S. Eyke
K. Jensen
23
171
0
30 Mar 2020
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
38
120
0
26 Mar 2020
A comprehensive study on the prediction reliability of graph neural networks for virtual screening
Soojung Yang
K. Lee
Seongok Ryu
19
7
0
17 Mar 2020
Deterministic Decoding for Discrete Data in Variational Autoencoders
Daniil Polykovskiy
Dmitry Vetrov
OffRL
21
8
0
04 Mar 2020
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
G. Simm
Robert Pinsler
José Miguel Hernández-Lobato
AI4CE
8
82
0
18 Feb 2020
Graph Deconvolutional Generation
Daniel Flam-Shepherd
Tony C Wu
Alán Aspuru-Guzik
BDL
25
31
0
14 Feb 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
21
279
0
08 Feb 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
43
425
0
26 Jan 2020
GraphGen: A Scalable Approach to Domain-agnostic Labeled Graph Generation
Nikhil Goyal
Harsh Jain
Sayan Ranu
10
90
0
22 Jan 2020
A Gentle Introduction to Deep Learning for Graphs
D. Bacciu
Federico Errica
A. Micheli
Marco Podda
AI4CE
GNN
42
276
0
29 Dec 2019
Molecular Generative Model Based On Adversarially Regularized Autoencoder
S. Hong
Jaechang Lim
Seongok Ryu
W. Kim
GAN
DRL
GNN
26
63
0
13 Nov 2019
G2SAT: Learning to Generate SAT Formulas
Jiaxuan You
Haoze Wu
Clark W. Barrett
R. Ramanujan
J. Leskovec
NAI
19
35
0
29 Oct 2019
Study of Deep Generative Models for Inorganic Chemical Compositions
Yoshihide Sawada
Koji Morikawa
Mikiya Fujii
GAN
12
13
0
25 Oct 2019
NEAR: Neighborhood Edge AggregatoR for Graph Classification
Cheolhyeong Kim
Haeseong Moon
H. Hwang
GNN
17
5
0
06 Sep 2019
DeepScaffold: a comprehensive tool for scaffold-based de novo drug discovery using deep learning
Yibo Li
Jianxing Hu
Yanxing Wang
Jielong Zhou
L. Zhang
Zhenming Liu
27
92
0
20 Aug 2019
Graph Neural Based End-to-end Data Association Framework for Online Multiple-Object Tracking
Xiaolong Jiang
Peizhao Li
Yanjing Li
Xiantong Zhen
VOT
26
32
0
11 Jul 2019
Deep Set Prediction Networks
Yan Zhang
Jonathon S. Hare
Adam Prugel-Bennett
17
107
0
15 Jun 2019
Neural Consciousness Flow
Xiaoran Xu
Wei Feng
Zhiqing Sun
Zhihong Deng
GNN
AI4CE
25
2
0
30 May 2019
Drug-Drug Adverse Effect Prediction with Graph Co-Attention
Andreea Deac
Yu-Hsiang Huang
Petar Velickovic
Pietro Lió
Jian Tang
20
77
0
02 May 2019
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Muhan Zhang
Shali Jiang
Zhicheng Cui
Roman Garnett
Yixin Chen
GNN
BDL
CML
24
196
0
24 Apr 2019
Adversarial Out-domain Examples for Generative Models
Dario Pasquini
Marco Mingione
M. Bernaschi
WIGM
SILM
AAML
15
6
0
07 Mar 2019
Learning to Sample Hard Instances for Graph Algorithms
Ryoma Sato
M. Yamada
H. Kashima
16
1
0
26 Feb 2019
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
159
8,356
0
03 Jan 2019
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
28
5,396
0
20 Dec 2018
Deep Learning on Graphs: A Survey
Ziwei Zhang
Peng Cui
Wenwu Zhu
GNN
39
1,320
0
11 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
194
633
0
29 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
44
691
0
22 Nov 2018
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
16
532
0
19 Oct 2018
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
94
3,078
0
04 Jun 2018
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
157
183
0
30 Apr 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,338
0
12 Feb 2018
Constrained Bayesian Optimization for Automatic Chemical Design
Ryan-Rhys Griffiths
José Miguel Hernández-Lobato
BDL
39
76
0
16 Sep 2017
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
253
3,239
0
24 Nov 2016
Previous
1
2
3