ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.11973
  4. Cited By
MolGAN: An implicit generative model for small molecular graphs

MolGAN: An implicit generative model for small molecular graphs

30 May 2018
Nicola De Cao
Thomas Kipf
    GNN
    GAN
ArXivPDFHTML

Papers citing "MolGAN: An implicit generative model for small molecular graphs"

40 / 140 papers shown
Title
A Deep Generative Model for Molecule Optimization via One Fragment
  Modification
A Deep Generative Model for Molecule Optimization via One Fragment Modification
Ziqi Chen
Martin Renqiang Min
S. Parthasarathy
Xia Ning
21
61
0
08 Dec 2020
Symmetry-Aware Actor-Critic for 3D Molecular Design
Symmetry-Aware Actor-Critic for 3D Molecular Design
G. Simm
Robert Pinsler
Gábor Csányi
José Miguel Hernández-Lobato
AI4CE
26
64
0
25 Nov 2020
Computing Graph Neural Networks: A Survey from Algorithms to
  Accelerators
Computing Graph Neural Networks: A Survey from Algorithms to Accelerators
S. Abadal
Akshay Jain
Robert Guirado
Jorge López-Alonso
Eduard Alarcón
GNN
27
225
0
30 Sep 2020
Scaffold-constrained molecular generation
Scaffold-constrained molecular generation
Maxime Langevin
H. Minoux
M. Levesque
M. Bianciotto
15
45
0
15 Sep 2020
A Systematic Survey on Deep Generative Models for Graph Generation
A Systematic Survey on Deep Generative Models for Graph Generation
Xiaojie Guo
Liang Zhao
MedIm
44
147
0
13 Jul 2020
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
Chengxi Zang
Fei-Yue Wang
BDL
14
280
0
17 Jun 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular
  Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
30
83
0
18 May 2020
Autonomous discovery in the chemical sciences part II: Outlook
Autonomous discovery in the chemical sciences part II: Outlook
Connor W. Coley
Natalie S. Eyke
K. Jensen
23
171
0
30 Mar 2020
A Survey of Deep Learning for Scientific Discovery
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
38
120
0
26 Mar 2020
A comprehensive study on the prediction reliability of graph neural
  networks for virtual screening
A comprehensive study on the prediction reliability of graph neural networks for virtual screening
Soojung Yang
K. Lee
Seongok Ryu
19
7
0
17 Mar 2020
Deterministic Decoding for Discrete Data in Variational Autoencoders
Deterministic Decoding for Discrete Data in Variational Autoencoders
Daniil Polykovskiy
Dmitry Vetrov
OffRL
21
8
0
04 Mar 2020
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
G. Simm
Robert Pinsler
José Miguel Hernández-Lobato
AI4CE
8
82
0
18 Feb 2020
Graph Deconvolutional Generation
Graph Deconvolutional Generation
Daniel Flam-Shepherd
Tony C Wu
Alán Aspuru-Guzik
BDL
25
31
0
14 Feb 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
21
279
0
08 Feb 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph
  Generation
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
43
425
0
26 Jan 2020
GraphGen: A Scalable Approach to Domain-agnostic Labeled Graph
  Generation
GraphGen: A Scalable Approach to Domain-agnostic Labeled Graph Generation
Nikhil Goyal
Harsh Jain
Sayan Ranu
10
90
0
22 Jan 2020
A Gentle Introduction to Deep Learning for Graphs
A Gentle Introduction to Deep Learning for Graphs
D. Bacciu
Federico Errica
A. Micheli
Marco Podda
AI4CE
GNN
42
276
0
29 Dec 2019
Molecular Generative Model Based On Adversarially Regularized
  Autoencoder
Molecular Generative Model Based On Adversarially Regularized Autoencoder
S. Hong
Jaechang Lim
Seongok Ryu
W. Kim
GAN
DRL
GNN
26
63
0
13 Nov 2019
G2SAT: Learning to Generate SAT Formulas
G2SAT: Learning to Generate SAT Formulas
Jiaxuan You
Haoze Wu
Clark W. Barrett
R. Ramanujan
J. Leskovec
NAI
19
35
0
29 Oct 2019
Study of Deep Generative Models for Inorganic Chemical Compositions
Study of Deep Generative Models for Inorganic Chemical Compositions
Yoshihide Sawada
Koji Morikawa
Mikiya Fujii
GAN
12
13
0
25 Oct 2019
NEAR: Neighborhood Edge AggregatoR for Graph Classification
NEAR: Neighborhood Edge AggregatoR for Graph Classification
Cheolhyeong Kim
Haeseong Moon
H. Hwang
GNN
17
5
0
06 Sep 2019
DeepScaffold: a comprehensive tool for scaffold-based de novo drug
  discovery using deep learning
DeepScaffold: a comprehensive tool for scaffold-based de novo drug discovery using deep learning
Yibo Li
Jianxing Hu
Yanxing Wang
Jielong Zhou
L. Zhang
Zhenming Liu
27
92
0
20 Aug 2019
Graph Neural Based End-to-end Data Association Framework for Online
  Multiple-Object Tracking
Graph Neural Based End-to-end Data Association Framework for Online Multiple-Object Tracking
Xiaolong Jiang
Peizhao Li
Yanjing Li
Xiantong Zhen
VOT
26
32
0
11 Jul 2019
Deep Set Prediction Networks
Deep Set Prediction Networks
Yan Zhang
Jonathon S. Hare
Adam Prugel-Bennett
17
107
0
15 Jun 2019
Neural Consciousness Flow
Neural Consciousness Flow
Xiaoran Xu
Wei Feng
Zhiqing Sun
Zhihong Deng
GNN
AI4CE
25
2
0
30 May 2019
Drug-Drug Adverse Effect Prediction with Graph Co-Attention
Drug-Drug Adverse Effect Prediction with Graph Co-Attention
Andreea Deac
Yu-Hsiang Huang
Petar Velickovic
Pietro Lió
Jian Tang
20
77
0
02 May 2019
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Muhan Zhang
Shali Jiang
Zhicheng Cui
Roman Garnett
Yixin Chen
GNN
BDL
CML
24
196
0
24 Apr 2019
Adversarial Out-domain Examples for Generative Models
Adversarial Out-domain Examples for Generative Models
Dario Pasquini
Marco Mingione
M. Bernaschi
WIGM
SILM
AAML
15
6
0
07 Mar 2019
Learning to Sample Hard Instances for Graph Algorithms
Learning to Sample Hard Instances for Graph Algorithms
Ryoma Sato
M. Yamada
H. Kashima
16
1
0
26 Feb 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
159
8,356
0
03 Jan 2019
Graph Neural Networks: A Review of Methods and Applications
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
28
5,396
0
20 Dec 2018
Deep Learning on Graphs: A Survey
Deep Learning on Graphs: A Survey
Ziwei Zhang
Peng Cui
Wenwu Zhu
GNN
39
1,320
0
11 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
194
633
0
29 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
44
691
0
22 Nov 2018
Optimization of Molecules via Deep Reinforcement Learning
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
16
532
0
19 Oct 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
94
3,078
0
04 Jun 2018
Conditional molecular design with deep generative models
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
157
183
0
30 Apr 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,338
0
12 Feb 2018
Constrained Bayesian Optimization for Automatic Chemical Design
Constrained Bayesian Optimization for Automatic Chemical Design
Ryan-Rhys Griffiths
José Miguel Hernández-Lobato
BDL
39
76
0
16 Sep 2017
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
253
3,239
0
24 Nov 2016
Previous
123