ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.00468
  4. Cited By
Implicit Bias of Gradient Descent on Linear Convolutional Networks

Implicit Bias of Gradient Descent on Linear Convolutional Networks

1 June 2018
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
    MDE
ArXivPDFHTML

Papers citing "Implicit Bias of Gradient Descent on Linear Convolutional Networks"

30 / 30 papers shown
Title
Training Large Neural Networks With Low-Dimensional Error Feedback
Training Large Neural Networks With Low-Dimensional Error Feedback
Maher Hanut
Jonathan Kadmon
78
1
0
27 Feb 2025
Implicit Geometry of Next-token Prediction: From Language Sparsity Patterns to Model Representations
Implicit Geometry of Next-token Prediction: From Language Sparsity Patterns to Model Representations
Yize Zhao
Tina Behnia
V. Vakilian
Christos Thrampoulidis
124
10
0
20 Feb 2025
The late-stage training dynamics of (stochastic) subgradient descent on homogeneous neural networks
Sholom Schechtman
Nicolas Schreuder
383
0
0
08 Feb 2025
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Chris Kolb
T. Weber
Bernd Bischl
David Rügamer
214
1
0
04 Feb 2025
Optimization Insights into Deep Diagonal Linear Networks
Optimization Insights into Deep Diagonal Linear Networks
Hippolyte Labarrière
C. Molinari
Lorenzo Rosasco
S. Villa
Cristian Vega
142
0
0
21 Dec 2024
SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning
SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning
Hojoon Lee
Dongyoon Hwang
Donghu Kim
Hyunseung Kim
Jun Jet Tai
K. Subramanian
Peter R. Wurman
Jaegul Choo
Peter Stone
Takuma Seno
OffRL
107
14
0
13 Oct 2024
Connectivity Shapes Implicit Regularization in Matrix Factorization Models for Matrix Completion
Connectivity Shapes Implicit Regularization in Matrix Factorization Models for Matrix Completion
Zhiwei Bai
Jiajie Zhao
Yaoyu Zhang
AI4CE
55
0
0
22 May 2024
Large-time asymptotics in deep learning
Large-time asymptotics in deep learning
Carlos Esteve
Borjan Geshkovski
Dario Pighin
Enrique Zuazua
77
34
0
06 Aug 2020
The Implicit Regularization of Stochastic Gradient Flow for Least
  Squares
The Implicit Regularization of Stochastic Gradient Flow for Least Squares
Alnur Ali
Yan Sun
Robert Tibshirani
56
77
0
17 Mar 2020
Can Implicit Bias Explain Generalization? Stochastic Convex Optimization
  as a Case Study
Can Implicit Bias Explain Generalization? Stochastic Convex Optimization as a Case Study
Assaf Dauber
M. Feder
Tomer Koren
Roi Livni
44
24
0
13 Mar 2020
Risk and parameter convergence of logistic regression
Risk and parameter convergence of logistic regression
Ziwei Ji
Matus Telgarsky
38
129
0
20 Mar 2018
Convergence of Gradient Descent on Separable Data
Convergence of Gradient Descent on Separable Data
Mor Shpigel Nacson
Jason D. Lee
Suriya Gunasekar
Pedro H. P. Savarese
Nathan Srebro
Daniel Soudry
60
167
0
05 Mar 2018
Characterizing Implicit Bias in Terms of Optimization Geometry
Characterizing Implicit Bias in Terms of Optimization Geometry
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
AI4CE
62
404
0
22 Feb 2018
Algorithmic Regularization in Over-parameterized Matrix Sensing and
  Neural Networks with Quadratic Activations
Algorithmic Regularization in Over-parameterized Matrix Sensing and Neural Networks with Quadratic Activations
Yuanzhi Li
Tengyu Ma
Hongyang R. Zhang
53
31
0
26 Dec 2017
Don't Decay the Learning Rate, Increase the Batch Size
Don't Decay the Learning Rate, Increase the Batch Size
Samuel L. Smith
Pieter-Jan Kindermans
Chris Ying
Quoc V. Le
ODL
93
990
0
01 Nov 2017
The Implicit Bias of Gradient Descent on Separable Data
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
74
908
0
27 Oct 2017
Implicit Regularization in Matrix Factorization
Implicit Regularization in Matrix Factorization
Suriya Gunasekar
Blake E. Woodworth
Srinadh Bhojanapalli
Behnam Neyshabur
Nathan Srebro
65
490
0
25 May 2017
Train longer, generalize better: closing the generalization gap in large
  batch training of neural networks
Train longer, generalize better: closing the generalization gap in large batch training of neural networks
Elad Hoffer
Itay Hubara
Daniel Soudry
ODL
142
799
0
24 May 2017
The Marginal Value of Adaptive Gradient Methods in Machine Learning
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
50
1,023
0
23 May 2017
Geometry of Optimization and Implicit Regularization in Deep Learning
Geometry of Optimization and Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Ruslan Salakhutdinov
Nathan Srebro
AI4CE
47
132
0
08 May 2017
The loss surface of deep and wide neural networks
The loss surface of deep and wide neural networks
Quynh N. Nguyen
Matthias Hein
ODL
89
284
0
26 Apr 2017
Sharp Minima Can Generalize For Deep Nets
Sharp Minima Can Generalize For Deep Nets
Laurent Dinh
Razvan Pascanu
Samy Bengio
Yoshua Bengio
ODL
103
766
0
15 Mar 2017
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
269
4,620
0
10 Nov 2016
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Pratik Chaudhari
A. Choromańska
Stefano Soatto
Yann LeCun
Carlo Baldassi
C. Borgs
J. Chayes
Levent Sagun
R. Zecchina
ODL
84
769
0
06 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
362
2,922
0
15 Sep 2016
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
85
2,000
0
14 Jun 2016
Deep Learning without Poor Local Minima
Deep Learning without Poor Local Minima
Kenji Kawaguchi
ODL
165
922
0
23 May 2016
Path-SGD: Path-Normalized Optimization in Deep Neural Networks
Path-SGD: Path-Normalized Optimization in Deep Neural Networks
Behnam Neyshabur
Ruslan Salakhutdinov
Nathan Srebro
ODL
57
305
0
08 Jun 2015
In Search of the Real Inductive Bias: On the Role of Implicit
  Regularization in Deep Learning
In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
AI4CE
78
655
0
20 Dec 2014
Margins, Shrinkage, and Boosting
Margins, Shrinkage, and Boosting
Matus Telgarsky
52
73
0
18 Mar 2013
1