ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.01794
  4. Cited By
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects
v1v2 (latest)

Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects

5 June 2018
Adam R. Kosiorek
Hyunjik Kim
Ingmar Posner
Yee Whye Teh
    BDL
ArXiv (abs)PDFHTML

Papers citing "Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects"

29 / 179 papers shown
Deep Variational Luenberger-type Observer for Stochastic Video Prediction
Dong Wang
Feng Zhou
Zheng Yan
Guang Yao
Zongxuan Liu
Wennan Ma
Cewu Lu
148
0
0
12 Feb 2020
Relational State-Space Model for Stochastic Multi-Object Systems
Relational State-Space Model for Stochastic Multi-Object SystemsInternational Conference on Learning Representations (ICLR), 2020
Fan Yang
Ling Chen
Fan Zhou
Yusong Gao
Wei Cao
249
8
0
13 Jan 2020
SPACE: Unsupervised Object-Oriented Scene Representation via Spatial
  Attention and Decomposition
SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and DecompositionInternational Conference on Learning Representations (ICLR), 2020
Zhixuan Lin
Yi-Fu Wu
Skand Peri
Weihao Sun
Gautam Singh
Fei Deng
Jindong Jiang
Sungjin Ahn
BDLOCL3DPC
504
263
0
08 Jan 2020
Towards Unsupervised Learning of Generative Models for 3D Controllable
  Image Synthesis
Towards Unsupervised Learning of Generative Models for 3D Controllable Image SynthesisComputer Vision and Pattern Recognition (CVPR), 2019
Yiyi Liao
Katja Schwarz
L. Mescheder
Andreas Geiger
3DV
211
165
0
11 Dec 2019
Towards Robust Image Classification Using Sequential Attention Models
Towards Robust Image Classification Using Sequential Attention ModelsComputer Vision and Pattern Recognition (CVPR), 2019
Daniel Zoran
Mike Chrzanowski
Po-Sen Huang
Sven Gowal
Alex Mott
Pushmeet Kohli
AAML
153
68
0
04 Dec 2019
Contrastive Learning of Structured World Models
Contrastive Learning of Structured World ModelsInternational Conference on Learning Representations (ICLR), 2019
Thomas Kipf
Elise van der Pol
Max Welling
OCLDRL
409
305
0
27 Nov 2019
Exploiting Spatial Invariance for Scalable Unsupervised Object Tracking
Exploiting Spatial Invariance for Scalable Unsupervised Object TrackingAAAI Conference on Artificial Intelligence (AAAI), 2019
Eric Crawford
Joelle Pineau
336
67
0
20 Nov 2019
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Amortized Population Gibbs Samplers with Neural Sufficient StatisticsInternational Conference on Machine Learning (ICML), 2019
Hao Wu
Heiko Zimmermann
Eli Sennesh
T. Le
Jan-Willem van de Meent
210
7
0
04 Nov 2019
Learning Disentangled Representations for Recommendation
Learning Disentangled Representations for RecommendationNeural Information Processing Systems (NeurIPS), 2019
Jianxin Ma
Chang Zhou
Peng Cui
Hongxia Yang
Wenwu Zhu
CMLDRL
230
364
0
31 Oct 2019
Entity Abstraction in Visual Model-Based Reinforcement Learning
Entity Abstraction in Visual Model-Based Reinforcement LearningConference on Robot Learning (CoRL), 2019
Rishi Veerapaneni
John D. Co-Reyes
Michael Chang
Michael Janner
Chelsea Finn
Jiajun Wu
J. Tenenbaum
Sergey Levine
OCLOffRL
445
198
0
28 Oct 2019
R-SQAIR: Relational Sequential Attend, Infer, Repeat
R-SQAIR: Relational Sequential Attend, Infer, Repeat
Aleksandar Stanić
Jürgen Schmidhuber
172
31
0
11 Oct 2019
Structured Object-Aware Physics Prediction for Video Modeling and
  Planning
Structured Object-Aware Physics Prediction for Video Modeling and PlanningInternational Conference on Learning Representations (ICLR), 2019
Jannik Kossen
Karl Stelzner
Marcel Hussing
C. Voelcker
Kristian Kersting
OCL
226
73
0
06 Oct 2019
SCALOR: Generative World Models with Scalable Object Representations
SCALOR: Generative World Models with Scalable Object RepresentationsInternational Conference on Learning Representations (ICLR), 2019
Jindong Jiang
Sepehr Janghorbani
Gerard de Melo
Sungjin Ahn
OCLDRL
427
144
0
06 Oct 2019
Enhancing Traffic Scene Predictions with Generative Adversarial Networks
Enhancing Traffic Scene Predictions with Generative Adversarial NetworksInternational Conference on Intelligent Transportation Systems (ITSC), 2019
Peter König
Sandra Aigner
Marco Körner
88
3
0
24 Sep 2019
GENESIS: Generative Scene Inference and Sampling with Object-Centric
  Latent Representations
GENESIS: Generative Scene Inference and Sampling with Object-Centric Latent RepresentationsInternational Conference on Learning Representations (ICLR), 2019
Martin Engelcke
Adam R. Kosiorek
Oiwi Parker Jones
Ingmar Posner
OCL
488
327
0
30 Jul 2019
End-to-end Recurrent Multi-Object Tracking and Trajectory Prediction
  with Relational Reasoning
End-to-end Recurrent Multi-Object Tracking and Trajectory Prediction with Relational Reasoning
F. Fuchs
Adam R. Kosiorek
Li Sun
Oiwi Parker Jones
Ingmar Posner
VOT
579
14
0
12 Jul 2019
Stacked Capsule Autoencoders
Stacked Capsule AutoencodersNeural Information Processing Systems (NeurIPS), 2019
Adam R. Kosiorek
S. Sabour
Yee Whye Teh
Geoffrey E. Hinton
OCL
228
273
0
17 Jun 2019
Multi-objects Generation with Amortized Structural Regularization
Multi-objects Generation with Amortized Structural RegularizationNeural Information Processing Systems (NeurIPS), 2019
Kun Xu
Chongxuan Li
Jun Zhu
Bo Zhang
163
17
0
10 Jun 2019
Learning from Unlabelled Videos Using Contrastive Predictive Neural 3D
  Mapping
Learning from Unlabelled Videos Using Contrastive Predictive Neural 3D Mapping
Adam W. Harley
S. K. Lakshmikanth
Fangyu Li
Xian Zhou
H. Tung
Katerina Fragkiadaki
SSL
350
5
0
10 Jun 2019
Towards Interpretable Reinforcement Learning Using Attention Augmented
  Agents
Towards Interpretable Reinforcement Learning Using Attention Augmented AgentsNeural Information Processing Systems (NeurIPS), 2019
Alex Mott
Daniel Zoran
Mike Chrzanowski
Daan Wierstra
Danilo Jimenez Rezende
282
201
0
06 Jun 2019
A Perspective on Objects and Systematic Generalization in Model-Based RL
A Perspective on Objects and Systematic Generalization in Model-Based RL
Sjoerd van Steenkiste
Klaus Greff
Jürgen Schmidhuber
OCLOffRL
196
31
0
03 Jun 2019
Hypothesis-Driven Skill Discovery for Hierarchical Deep Reinforcement
  Learning
Hypothesis-Driven Skill Discovery for Hierarchical Deep Reinforcement LearningIEEE/RJS International Conference on Intelligent RObots and Systems (IROS), 2019
Caleb Chuck
Supawit Chockchowwat
S. Niekum
180
14
0
27 May 2019
Physics-as-Inverse-Graphics: Unsupervised Physical Parameter Estimation
  from Video
Physics-as-Inverse-Graphics: Unsupervised Physical Parameter Estimation from VideoInternational Conference on Learning Representations (ICLR), 2019
Miguel Jaques
Michael G. Burke
Timothy M. Hospedales
VGenPINN
213
54
0
27 May 2019
On Deep Set Learning and the Choice of Aggregations
On Deep Set Learning and the Choice of AggregationsInternational Conference on Artificial Neural Networks (ICANN), 2019
Maximilian Sölch
A. Akhundov
Patrick van der Smagt
Justin Bayer
TDI
146
20
0
18 Mar 2019
Stochastic Prediction of Multi-Agent Interactions from Partial
  Observations
Stochastic Prediction of Multi-Agent Interactions from Partial Observations
Chen Sun
Per Karlsson
Jiajun Wu
J. Tenenbaum
Kevin Patrick Murphy
218
89
0
25 Feb 2019
On the Limitations of Representing Functions on Sets
On the Limitations of Representing Functions on Sets
E. Wagstaff
F. Fuchs
Martin Engelcke
Ingmar Posner
Michael A. Osborne
332
176
0
25 Jan 2019
MONet: Unsupervised Scene Decomposition and Representation
MONet: Unsupervised Scene Decomposition and Representation
Christopher P. Burgess
Loic Matthey
Nicholas Watters
Rishabh Kabra
I. Higgins
M. Botvinick
Alexander Lerchner
OCL
389
570
0
22 Jan 2019
Credit Assignment Techniques in Stochastic Computation Graphs
Credit Assignment Techniques in Stochastic Computation Graphs
T. Weber
N. Heess
Lars Buesing
David Silver
166
47
0
07 Jan 2019
Learning to Decompose and Disentangle Representations for Video
  Prediction
Learning to Decompose and Disentangle Representations for Video Prediction
Jun-Ting Hsieh
Bingbin Liu
De-An Huang
Li Fei-Fei
Juan Carlos Niebles
DRL
364
316
0
11 Jun 2018
Previous
1234