Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.03963
Cited By
Neural Proximal Gradient Descent for Compressive Imaging
1 June 2018
Morteza Mardani
Qingyun Sun
Shreyas S. Vasawanala
Vardan Papyan
Hatef Monajemi
John M. Pauly
D. Donoho
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Neural Proximal Gradient Descent for Compressive Imaging"
50 / 72 papers shown
Title
Sparsity-Driven Parallel Imaging Consistency for Improved Self-Supervised MRI Reconstruction
Yasar Utku Alçalar
Mehmet Akçakaya
29
1
0
30 May 2025
Comprehensive Examination of Unrolled Networks for Solving Linear Inverse Problems
Eric Chen
Xi Chen
A. Maleki
S. Jalali
155
0
0
08 Jan 2025
Injectivity capacity of ReLU gates
Mihailo Stojnic
70
0
0
28 Oct 2024
A Unified Model for Compressed Sensing MRI Across Undersampling Patterns
Armeet Singh Jatyani
Jiayun Wang
Zihui Wu
Miguel Liu-Schiaffini
Bahareh Tolooshams
Anima Anandkumar
Anima Anandkumar
77
2
0
05 Oct 2024
Controlled Learning of Pointwise Nonlinearities in Neural-Network-Like Architectures
Michael Unser
Alexis Goujon
Stanislas Ducotterd
123
2
0
23 Aug 2024
Learning Regularization for Graph Inverse Problems
Moshe Eliasof
Md Shahriar Rahim Siddiqui
Carola-Bibiane Schönlieb
Eldad Haber
GNN
195
0
0
19 Aug 2024
Graph Neural Reaction Diffusion Models
Moshe Eliasof
Eldad Haber
Eran Treister
DiffM
AI4CE
98
3
0
16 Jun 2024
A Brief Overview of Optimization-Based Algorithms for MRI Reconstruction Using Deep Learning
Wanyu Bian
119
7
0
03 Jun 2024
A General Continuous-Time Formulation of Stochastic ADMM and Its Variants
Chris Junchi Li
71
0
0
22 Apr 2024
Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview
Alexander Auras
Kanchana Vaishnavi Gandikota
Hannah Droege
Michael Moeller
AAML
72
0
0
19 Feb 2024
An Over Complete Deep Learning Method for Inverse Problems
Moshe Eliasof
Eldad Haber
Eran Treister
54
3
0
07 Feb 2024
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
86
12
0
22 Oct 2023
Deep Unrolling Networks with Recurrent Momentum Acceleration for Nonlinear Inverse Problems
Qingping Zhou
Jiayu Qian
Junqi Tang
Jinglai Li
AI4CE
66
5
0
30 Jul 2023
Feature Transportation Improves Graph Neural Networks
Moshe Eliasof
E. Haber
Eran Treister
GNN
109
12
0
29 Jul 2023
Towards Constituting Mathematical Structures for Learning to Optimize
Jialin Liu
Xiaohan Chen
Zhangyang Wang
W. Yin
HanQin Cai
106
13
0
29 May 2023
DRIP: Deep Regularizers for Inverse Problems
Moshe Eliasof
E. Haber
Eran Treister
90
8
0
30 Mar 2023
Learning Trees of
ℓ
0
\ell_0
ℓ
0
-Minimization Problems
G. Welper
64
0
0
06 Feb 2023
Estimating a potential without the agony of the partition function
E. Haber
Moshe Eliasof
L. Tenorio
61
2
0
19 Aug 2022
GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction
Batu Mehmet Ozturkler
Arda Sahiner
Tolga Ergen
Arjun D Desai
Christopher M. Sandino
S. Vasanawala
John M. Pauly
Morteza Mardani
Mert Pilanci
50
4
0
18 Jul 2022
Uncertainty Quantification for Deep Unrolling-Based Computational Imaging
Canberk Ekmekci
Müjdat Çetin
UQCV
107
12
0
02 Jul 2022
RU-Net: Regularized Unrolling Network for Scene Graph Generation
Xin Lin
Changxing Ding
Jing Zhang
Yibing Zhan
Dacheng Tao
81
34
0
03 May 2022
PnP-ReG: Learned Regularizing Gradient for Plug-and-Play Gradient Descent
Rita Fermanian
Mikael Le Pendu
C. Guillemot
73
7
0
29 Apr 2022
Scale-Equivariant Unrolled Neural Networks for Data-Efficient Accelerated MRI Reconstruction
Beliz Gunel
Arda Sahiner
Arjun D Desai
Akshay S. Chaudhari
S. Vasanawala
Mert Pilanci
John M. Pauly
MedIm
68
8
0
21 Apr 2022
Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging
Kerstin Hammernik
Thomas Kustner
Burhaneddin Yaman
Zhengnan Huang
Daniel Rueckert
Florian Knoll
Mehmet Akçakaya
PINN
MedIm
AI4CE
94
75
0
23 Mar 2022
Learning A 3D-CNN and Transformer Prior for Hyperspectral Image Super-Resolution
Qing Ma
Junjun Jiang
Xianming Liu
Jiayi Ma
ViT
116
59
0
27 Nov 2021
Preconditioned Plug-and-Play ADMM with Locally Adjustable Denoiser for Image Restoration
Mikael Le Pendu
C. Guillemot
72
17
0
01 Oct 2021
A review and experimental evaluation of deep learning methods for MRI reconstruction
Arghya Pal
Yogesh Rathi
3DV
111
47
0
17 Sep 2021
Feasibility-based Fixed Point Networks
Howard Heaton
Samy Wu Fung
A. Gibali
W. Yin
57
26
0
29 Apr 2021
A Design Space Study for LISTA and Beyond
Tianjian Meng
Xiaohan Chen
Yi Ding
Zhangyang Wang
72
3
0
08 Apr 2021
Equivariant Imaging: Learning Beyond the Range Space
Dongdong Chen
Julián Tachella
Mike E. Davies
SSL
110
103
0
26 Mar 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
266
237
0
23 Mar 2021
Improving Generalizability in Limited-Angle CT Reconstruction with Sinogram Extrapolation
Ce Wang
Haimiao Zhang
Qian Li
Kun Shang
Y. Lyu
Bin Dong
S. Kevin Zhou
128
14
0
09 Mar 2021
Deep Equilibrium Architectures for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
103
183
0
16 Feb 2021
Non-Convex Compressed Sensing with Training Data
G. Welper
65
1
0
20 Jan 2021
DAEs for Linear Inverse Problems: Improved Recovery with Provable Guarantees
J. Dhaliwal
Kyle Hambrook
118
0
0
13 Jan 2021
Phase Retrieval using Expectation Consistent Signal Recovery Algorithm based on Hypernetwork
Chang-Jen Wang
Chao-Kai Wen
Shang-Ho
S. Tsai
Shi Jin
Geoffrey Ye Li
60
5
0
12 Jan 2021
Convex Regularization Behind Neural Reconstruction
Arda Sahiner
Morteza Mardani
Batu Mehmet Ozturkler
Mert Pilanci
John M. Pauly
67
25
0
09 Dec 2020
Model Adaptation for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
OOD
MedIm
134
49
0
30 Nov 2020
TFPnP: Tuning-free Plug-and-Play Proximal Algorithm with Applications to Inverse Imaging Problems
Kaixuan Wei
Angelica Aviles-Rivero
Jingwei Liang
Ying Fu
Hua Huang
Carola-Bibiane Schönlieb
74
35
0
18 Nov 2020
Convergence Acceleration via Chebyshev Step: Plausible Interpretation of Deep-Unfolded Gradient Descent
Satoshi Takabe
Tadashi Wadayama
61
10
0
26 Oct 2020
Unsupervised MRI Reconstruction with Generative Adversarial Networks
Elizabeth K. Cole
John M. Pauly
S. Vasanawala
Frank Ong
GAN
MedIm
62
51
0
29 Aug 2020
Neural Network-based Reconstruction in Compressed Sensing MRI Without Fully-sampled Training Data
Alan Q. Wang
Adrian Dalca
M. Sabuncu
91
26
0
29 Jul 2020
FLOT: Scene Flow on Point Clouds Guided by Optimal Transport
Gilles Puy
Alexandre Boulch
Renaud Marlet
3DPC
OT
216
187
0
22 Jul 2020
Compressed Sensing via Measurement-Conditional Generative Models
Kyungsu Kim
J. H. Lee
Eunho Yang
GAN
MedIm
69
3
0
02 Jul 2020
Compressive MR Fingerprinting reconstruction with Neural Proximal Gradient iterations
Dongdong Chen
Mike E. Davies
Mohammad Golbabaee
66
16
0
27 Jun 2020
MetaInv-Net: Meta Inversion Network for Sparse View CT Image Reconstruction
Haimiao Zhang
Baodong Liu
Hengyong Yu
Bin Dong
82
63
0
30 May 2020
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
128
537
0
12 May 2020
Learning Sampling and Model-Based Signal Recovery for Compressed Sensing MRI
Iris A. M. Huijben
Bastiaan S. Veeling
Ruud J. G. van Sloun
90
33
0
22 Apr 2020
Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction
Elizabeth K. Cole
Joseph Y. Cheng
John M. Pauly
S. Vasanawala
61
11
0
03 Apr 2020
Solving Inverse Problems with a Flow-based Noise Model
Jay Whang
Qi Lei
A. Dimakis
132
39
0
18 Mar 2020
1
2
Next