ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.03963
  4. Cited By
Neural Proximal Gradient Descent for Compressive Imaging

Neural Proximal Gradient Descent for Compressive Imaging

1 June 2018
Morteza Mardani
Qingyun Sun
Shreyas S. Vasawanala
Vardan Papyan
Hatef Monajemi
John M. Pauly
D. Donoho
ArXiv (abs)PDFHTML

Papers citing "Neural Proximal Gradient Descent for Compressive Imaging"

22 / 72 papers shown
Title
Composing Normalizing Flows for Inverse Problems
Composing Normalizing Flows for Inverse Problems
Jay Whang
Erik M. Lindgren
A. Dimakis
TPM
116
51
0
26 Feb 2020
Theoretical Interpretation of Learned Step Size in Deep-Unfolded
  Gradient Descent
Theoretical Interpretation of Learned Step Size in Deep-Unfolded Gradient Descent
Satoshi Takabe
Tadashi Wadayama
41
10
0
15 Jan 2020
Understanding and mitigating gradient pathologies in physics-informed
  neural networks
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CEPINN
137
297
0
13 Jan 2020
The troublesome kernel -- On hallucinations, no free lunches and the
  accuracy-stability trade-off in inverse problems
The troublesome kernel -- On hallucinations, no free lunches and the accuracy-stability trade-off in inverse problems
N. Gottschling
Vegard Antun
A. Hansen
Ben Adcock
87
35
0
05 Jan 2020
Memory-efficient Learning for Large-scale Computational Imaging --
  NeurIPS deep inverse workshop
Memory-efficient Learning for Large-scale Computational Imaging -- NeurIPS deep inverse workshop
Michael R. Kellman
Jonathan I. Tamir
E. Bostan
Michael Lustig
Laura Waller
SupR
96
58
0
11 Dec 2019
Compressed MRI Reconstruction Exploiting a Rotation-Invariant Total
  Variation Discretization
Compressed MRI Reconstruction Exploiting a Rotation-Invariant Total Variation Discretization
E. E. Esfahani
A. Hosseini
104
6
0
26 Nov 2019
Deep Decomposition Learning for Inverse Imaging Problems
Deep Decomposition Learning for Inverse Imaging Problems
Dongdong Chen
Mike E. Davies
69
40
0
25 Nov 2019
Accelerating cardiac cine MRI using a deep learning-based ESPIRiT
  reconstruction
Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction
Christopher M. Sandino
P. Lai
S. Vasanawala
Joseph Y. Cheng
109
3
0
13 Nov 2019
Differentiable Convex Optimization Layers
Differentiable Convex Optimization Layers
Akshay Agrawal
Brandon Amos
Shane T. Barratt
Stephen P. Boyd
Steven Diamond
Zico Kolter
102
666
0
28 Oct 2019
Wasserstein GANs for MR Imaging: from Paired to Unpaired Training
Wasserstein GANs for MR Imaging: from Paired to Unpaired Training
Ke Lei
Morteza Mardani
John M. Pauly
S. Vasanawala
GANMedIm
118
65
0
15 Oct 2019
Momentum-Net: Fast and convergent iterative neural network for inverse
  problems
Momentum-Net: Fast and convergent iterative neural network for inverse problems
Il Yong Chun
Zhengyu Huang
Hongki Lim
Jeffrey A. Fessler
116
82
0
26 Jul 2019
Convolutional dictionary learning based auto-encoders for natural
  exponential-family distributions
Convolutional dictionary learning based auto-encoders for natural exponential-family distributions
Bahareh Tolooshams
Andrew H. Song
S. Temereanca
Demba E. Ba
BDL
60
0
0
07 Jul 2019
Inverting Deep Generative models, One layer at a time
Inverting Deep Generative models, One layer at a time
Qi Lei
A. Jalal
Inderjit S. Dhillon
A. Dimakis
95
51
0
18 Jun 2019
Degrees of Freedom Analysis of Unrolled Neural Networks
Degrees of Freedom Analysis of Unrolled Neural Networks
Morteza Mardani
Qingyun Sun
Vardan Papyan
S. Vasanawala
John M. Pauly
D. Donoho
UQCV
33
8
0
10 Jun 2019
Deep Residual Autoencoders for Expectation Maximization-inspired
  Dictionary Learning
Deep Residual Autoencoders for Expectation Maximization-inspired Dictionary Learning
Bahareh Tolooshams
Sourav Dey
Demba E. Ba
54
4
0
18 Apr 2019
Compressed Sensing: From Research to Clinical Practice with Data-Driven
  Learning
Compressed Sensing: From Research to Clinical Practice with Data-Driven Learning
Joseph Y. Cheng
Feiyu Chen
Christopher M. Sandino
Morteza Mardani
John M. Pauly
S. Vasanawala
73
12
0
19 Mar 2019
On instabilities of deep learning in image reconstruction - Does AI come
  at a cost?
On instabilities of deep learning in image reconstruction - Does AI come at a cost?
Vegard Antun
F. Renna
C. Poon
Ben Adcock
A. Hansen
69
610
0
14 Feb 2019
Uncertainty Quantification in Deep MRI Reconstruction
Uncertainty Quantification in Deep MRI Reconstruction
Vineet Edupuganti
Morteza Mardani
S. Vasanawala
John M. Pauly
UQCV
81
95
0
31 Jan 2019
Neumann Networks for Inverse Problems in Imaging
Neumann Networks for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
78
24
0
13 Jan 2019
Task adapted reconstruction for inverse problems
Task adapted reconstruction for inverse problems
J. Adler
Sebastian Lunz
Olivier Verdier
Carola-Bibiane Schönlieb
Ozan Oktem
75
43
0
27 Aug 2018
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling
Shanshan Wu
A. Dimakis
Sujay Sanghavi
Felix X. Yu
D. Holtmann-Rice
Dmitry Storcheus
Afshin Rostamizadeh
Sanjiv Kumar
SSL
74
53
0
26 Jun 2018
Compressed Sensing with Deep Image Prior and Learned Regularization
Compressed Sensing with Deep Image Prior and Learned Regularization
Dave Van Veen
A. Jalal
Mahdi Soltanolkotabi
Eric Price
S. Vishwanath
A. Dimakis
139
182
0
17 Jun 2018
Previous
12