ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.04731
  4. Cited By
Deep learning to represent sub-grid processes in climate models
v1v2v3 (latest)

Deep learning to represent sub-grid processes in climate models

12 June 2018
S. Rasp
Michael S. Pritchard
Pierre Gentine
    AI4ClAI4CE
ArXiv (abs)PDFHTML

Papers citing "Deep learning to represent sub-grid processes in climate models"

50 / 152 papers shown
Title
Emulating Aerosol Microphysics with Machine Learning
Emulating Aerosol Microphysics with Machine Learning
P. Harder
D. Watson‐Parris
Dominik Strassel
N. Gauger
P. Stier
J. Keuper
107
6
0
22 Sep 2021
Combining data assimilation and machine learning to estimate parameters
  of a convective-scale model
Combining data assimilation and machine learning to estimate parameters of a convective-scale modelQuarterly Journal of the Royal Meteorological Society (QJRMS), 2021
Stefanie Legler
T. Janjić
121
20
0
07 Sep 2021
Combining machine learning and data assimilation to forecast dynamical
  systems from noisy partial observations
Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observationsChaos (Chaos), 2021
Georg Gottwald
Sebastian Reich
AI4CE
174
40
0
08 Aug 2021
Quantum Artificial Intelligence for the Science of Climate Change
Quantum Artificial Intelligence for the Science of Climate Change
Manmeet Singh
C. Dhara
Adarsh Kumar
S. Gill
Steve Uhlig
AI4CE
167
17
0
28 Jul 2021
A comparison of combined data assimilation and machine learning methods
  for offline and online model error correction
A comparison of combined data assimilation and machine learning methods for offline and online model error correctionJournal of Computer Science (JCS), 2021
A. Farchi
Marc Bocquet
P. Laloyaux
Massimo Bonavita
Quentin Malartic
OffRL
189
45
0
23 Jul 2021
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable
  domain decomposition approach for solving differential equations
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equationsAdvances in Computational Mathematics (Adv. Comput. Math.), 2021
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
133
284
0
16 Jul 2021
Batch Inverse-Variance Weighting: Deep Heteroscedastic Regression
Batch Inverse-Variance Weighting: Deep Heteroscedastic Regression
Vincent Mai
Waleed D. Khamies
Liam Paull
NoLaBDL
106
3
0
09 Jul 2021
Deep learning for improved global precipitation in numerical weather
  prediction systems
Deep learning for improved global precipitation in numerical weather prediction systems
Manmeet Singh
B. Kumar
Suryachandra A. Rao
S. Gill
R. Chattopadhyay
R. Nanjundiah
D. Niyogi
AI4Cl
104
16
0
20 Jun 2021
PCE-PINNs: Physics-Informed Neural Networks for Uncertainty Propagation
  in Ocean Modeling
PCE-PINNs: Physics-Informed Neural Networks for Uncertainty Propagation in Ocean Modeling
Björn Lütjens
Catherine H. Crawford
Mark S. Veillette
Dava Newman
144
11
0
05 May 2021
Bridging observation, theory and numerical simulation of the ocean using
  Machine Learning
Bridging observation, theory and numerical simulation of the ocean using Machine LearningEnvironmental Research Letters (ERL), 2021
Maike Sonnewald
Redouane Lguensat
Daniel C. Jones
P. Dueben
J. Brajard
Venkatramani Balaji
AI4ClAI4CE
196
115
0
26 Apr 2021
Mosaic Flows: A Transferable Deep Learning Framework for Solving PDEs on
  Unseen Domains
Mosaic Flows: A Transferable Deep Learning Framework for Solving PDEs on Unseen DomainsComputer Methods in Applied Mechanics and Engineering (CMAME), 2021
Hengjie Wang
R. Planas
Aparna Chandramowlishwaran
Ramin Bostanabad
AI4CE
244
68
0
22 Apr 2021
Controlled abstention neural networks for identifying skillful
  predictions for regression problems
Controlled abstention neural networks for identifying skillful predictions for regression problemsJournal of Advances in Modeling Earth Systems (JAMES), 2021
E. Barnes
R. Barnes
158
28
0
16 Apr 2021
Using Machine Learning at Scale in HPC Simulations with SmartSim: An
  Application to Ocean Climate Modeling
Using Machine Learning at Scale in HPC Simulations with SmartSim: An Application to Ocean Climate Modeling
Sam Partee
M. Ellis
Alessandro Rigazzi
S. Bachman
Gustavo M. Marques
Andrew Shao
Benjamin Robbins
AI4ClAI4CE
93
21
0
13 Apr 2021
Machine Learning Emulation of 3D Cloud Radiative Effects
Machine Learning Emulation of 3D Cloud Radiative EffectsJournal of Advances in Modeling Earth Systems (JAMES), 2021
David Meyer
R. Hogan
P. Dueben
Shannon L. Mason
144
31
0
22 Mar 2021
Data-driven geophysical forecasting: Simple, low-cost, and accurate
  baselines with kernel methods
Data-driven geophysical forecasting: Simple, low-cost, and accurate baselines with kernel methodsProceedings of the Royal Society A (Proc. R. Soc. A), 2021
B. Hamzi
R. Maulik
H. Owhadi
AI4TS
177
30
0
13 Feb 2021
Urban Change Detection by Fully Convolutional Siamese Concatenate
  Network with Attention
Urban Change Detection by Fully Convolutional Siamese Concatenate Network with Attention
Farnoosh Heidary
M. Yazdi
M. Dehghani
P. Setoodeh
85
3
0
31 Jan 2021
Will Artificial Intelligence supersede Earth System and Climate Models?
Will Artificial Intelligence supersede Earth System and Climate Models?Nature Machine Intelligence (Nat. Mach. Intell.), 2021
C. Irrgang
Niklas Boers
Maike Sonnewald
E. Barnes
C. Kadow
J. Staneva
J. Saynisch‐Wagner
AI4ClAI4CE
180
214
0
22 Jan 2021
Copula-based synthetic data augmentation for machine-learning emulators
Copula-based synthetic data augmentation for machine-learning emulatorsGeoscientific Model Development (GMD), 2020
David Meyer
T. Nagler
R. Hogan
108
27
0
16 Dec 2020
Forecasting: theory and practice
Forecasting: theory and practiceInternational Journal of Forecasting (IJF), 2020
F. Petropoulos
D. Apiletti
Vassilios Assimakopoulos
M. Z. Babai
Devon K. Barrow
...
J. Arenas
Xiaoqian Wang
R. L. Winkler
Alisa Yusupova
F. Ziel
AI4TS
291
437
0
04 Dec 2020
Machine-Learned Preconditioners for Linear Solvers in Geophysical Fluid
  Flows
Machine-Learned Preconditioners for Linear Solvers in Geophysical Fluid Flows
Jan Ackmann
P. Düben
T. Palmer
P. Smolarkiewicz
AI4ClAI4CE
124
23
0
06 Oct 2020
Combining data assimilation and machine learning to infer unresolved
  scale parametrisation
Combining data assimilation and machine learning to infer unresolved scale parametrisation
J. Brajard
A. Carrassi
Marc Bocquet
Laurent Bertino
237
130
0
09 Sep 2020
TRU-NET: A Deep Learning Approach to High Resolution Prediction of
  Rainfall
TRU-NET: A Deep Learning Approach to High Resolution Prediction of Rainfall
Rilwan A. Adewoyin
P. Dueben
P. Watson
Yulan He
Ritabrata Dutta
AI4CE
96
75
0
20 Aug 2020
Climbing down Charney's ladder: Machine Learning and the post-Dennard
  era of computational climate science
Climbing down Charney's ladder: Machine Learning and the post-Dennard era of computational climate science
Venkatramani Balaji
AI4CE
196
54
0
24 May 2020
Deep Learning for Post-Processing Ensemble Weather Forecasts
Deep Learning for Post-Processing Ensemble Weather Forecasts
Peter Grönquist
Chengyuan Yao
Tal Ben-Nun
Nikoli Dryden
P. Dueben
Shigang Li
Torsten Hoefler
155
177
0
18 May 2020
Sherpa: Robust Hyperparameter Optimization for Machine Learning
Sherpa: Robust Hyperparameter Optimization for Machine Learning
L. Hertel
Julian Collado
Peter Sadowski
J. Ott
Pierre Baldi
151
112
0
08 May 2020
A Fortran-Keras Deep Learning Bridge for Scientific Computing
A Fortran-Keras Deep Learning Bridge for Scientific ComputingScientific Programming (SP), 2020
J. Ott
M. Pritchard
Natalie Best
Erik J. Linstead
M. Curcic
Pierre Baldi
AI4CE
147
104
0
14 Apr 2020
Resampling with neural networks for stochastic parameterization in
  multiscale systems
Resampling with neural networks for stochastic parameterization in multiscale systems
D. Crommelin
W. Edeling
AI4CE
96
14
0
03 Apr 2020
Improving data-driven global weather prediction using deep convolutional
  neural networks on a cubed sphere
Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphereJournal of Advances in Modeling Earth Systems (JAMES), 2020
Jonathan A. Weyn
Dale Durran
R. Caruana
AI4Cl
94
302
0
15 Mar 2020
Integrating Scientific Knowledge with Machine Learning for Engineering
  and Environmental Systems
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental SystemsACM Computing Surveys (ACM CSUR), 2020
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
376
488
0
10 Mar 2020
Data-driven super-parameterization using deep learning: Experimentation
  with multi-scale Lorenz 96 systems and transfer-learning
Data-driven super-parameterization using deep learning: Experimentation with multi-scale Lorenz 96 systems and transfer-learningJournal of Advances in Modeling Earth Systems (JAMES), 2020
Ashesh Chattopadhyay
Adam Subel
Pedram Hassanzadeh
BDLAI4CE
127
60
0
25 Feb 2020
Towards Physically-consistent, Data-driven Models of Convection
Towards Physically-consistent, Data-driven Models of ConvectionIEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2020
Tom Beucler
Michael S. Pritchard
Pierre Gentine
S. Rasp
AI4CE
148
33
0
20 Feb 2020
WeatherBench: A benchmark dataset for data-driven weather forecasting
WeatherBench: A benchmark dataset for data-driven weather forecastingJournal of Advances in Modeling Earth Systems (JAMES), 2020
S. Rasp
P. Dueben
S. Scher
Jonathan A. Weyn
Soukayna Mouatadid
Nils Thuerey
AI4ClAI4TS
426
547
0
02 Feb 2020
Using Machine Learning for Model Physics: an Overview
Using Machine Learning for Model Physics: an Overview
V. Krasnopolsky
Aleksei A. Belochitski
PINNAI4CE
151
10
0
02 Feb 2020
Where Are We? Using Scopus to Map the Literature at the Intersection
  Between Artificial Intelligence and Research on Crime
Where Are We? Using Scopus to Map the Literature at the Intersection Between Artificial Intelligence and Research on CrimeJournal of Computational Social Science (JCSS), 2019
G. Campedelli
112
27
0
23 Dec 2019
Physically Interpretable Neural Networks for the Geosciences:
  Applications to Earth System Variability
Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System VariabilityJournal of Advances in Modeling Earth Systems (JAMES), 2019
B. Toms
E. Barnes
I. Ebert‐Uphoff
AI4CE
184
234
0
04 Dec 2019
AI Ethics for Systemic Issues: A Structural Approach
AI Ethics for Systemic Issues: A Structural Approach
A. Loeff
I. Bassi
S. Kapila
Jevgenij Gamper
67
8
0
08 Nov 2019
Learning Everywhere: A Taxonomy for the Integration of Machine Learning
  and Simulations
Learning Everywhere: A Taxonomy for the Integration of Machine Learning and SimulationseScience (eScience), 2019
Geoffrey C. Fox
S. Jha
AI4CE
144
13
0
29 Sep 2019
Machine Learning for Stochastic Parameterization: Generative Adversarial
  Networks in the Lorenz '96 Model
Machine Learning for Stochastic Parameterization: Generative Adversarial Networks in the Lorenz '96 ModelJournal of Advances in Modeling Earth Systems (JAMES), 2019
D. Gagne
H. Christensen
A. Subramanian
A. Monahan
AI4CEBDL
211
151
0
10 Sep 2019
Understanding ML driven HPC: Applications and Infrastructure
Understanding ML driven HPC: Applications and InfrastructureeScience (eScience), 2019
Geoffrey C. Fox
S. Jha
74
14
0
05 Sep 2019
Analog forecasting of extreme-causing weather patterns using deep
  learning
Analog forecasting of extreme-causing weather patterns using deep learningJournal of Advances in Modeling Earth Systems (JAMES), 2019
Ashesh Chattopadhyay
Ebrahim Nabizadeh
Pedram Hassanzadeh
173
160
0
26 Jul 2019
Data-driven prediction of a multi-scale Lorenz 96 chaotic system using
  deep learning methods: Reservoir computing, ANN, and RNN-LSTM
Data-driven prediction of a multi-scale Lorenz 96 chaotic system using deep learning methods: Reservoir computing, ANN, and RNN-LSTM
Ashesh Chattopadhyay
Pedram Hassanzadeh
D. Subramanian
AI4CE
217
41
0
20 Jun 2019
Achieving Conservation of Energy in Neural Network Emulators for Climate
  Modeling
Achieving Conservation of Energy in Neural Network Emulators for Climate Modeling
Tom Beucler
S. Rasp
Michael S. Pritchard
Pierre Gentine
97
87
0
15 Jun 2019
Tackling Climate Change with Machine Learning
Tackling Climate Change with Machine LearningACM Computing Surveys (ACM CSUR), 2019
David Rolnick
P. Donti
L. Kaack
K. Kochanski
Alexandre Lacoste
...
Demis Hassabis
John C. Platt
F. Creutzig
J. Chayes
Yoshua Bengio
AI4ClAI4CE
278
923
0
10 Jun 2019
Combining crowd-sourcing and deep learning to explore the meso-scale
  organization of shallow convection
Combining crowd-sourcing and deep learning to explore the meso-scale organization of shallow convectionBulletin of The American Meteorological Society - (BAMS) (BAMS), 2019
S. Rasp
H. Schulz
S. Bony
B. Stevens
188
59
0
05 Jun 2019
Stratospheric Aerosol Injection as a Deep Reinforcement Learning Problem
Stratospheric Aerosol Injection as a Deep Reinforcement Learning Problem
Christian Schroeder de Witt
Thomas Hornigold
AI4CE
74
8
0
17 May 2019
Enforcing Statistical Constraints in Generative Adversarial Networks for
  Modeling Chaotic Dynamical Systems
Enforcing Statistical Constraints in Generative Adversarial Networks for Modeling Chaotic Dynamical SystemsJournal of Computational Physics (JCP), 2019
Jin-Long Wu
K. Kashinath
A. Albert
D. Chirila
P. Prabhat
Heng Xiao
AI4CE
147
142
0
13 May 2019
Visualizing the Consequences of Climate Change Using Cycle-Consistent
  Adversarial Networks
Visualizing the Consequences of Climate Change Using Cycle-Consistent Adversarial Networks
Victor Schmidt
A. Luccioni
S. Mukkavilli
Narmada M. Balasooriya
Kris Sankaran
J. Chayes
Yoshua Bengio
GAN
89
40
0
02 May 2019
Applying machine learning to improve simulations of a chaotic dynamical
  system using empirical error correction
Applying machine learning to improve simulations of a chaotic dynamical system using empirical error correction
P. Watson
AI4ClAI4CE
87
69
0
24 Apr 2019
Representing ill-known parts of a numerical model using a machine
  learning approach
Representing ill-known parts of a numerical model using a machine learning approach
J. Brajard
A. Charantonis
J. Sirven
41
3
0
18 Mar 2019
Learning Everywhere: Pervasive Machine Learning for Effective
  High-Performance Computation
Learning Everywhere: Pervasive Machine Learning for Effective High-Performance ComputationIEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPS), 2019
Geoffrey C. Fox
J. Glazier
J. Kadupitiya
V. Jadhao
Minje Kim
...
Madhav V. Marathe
Abhijin Adiga
Jiangzhuo Chen
O. Beckstein
S. Jha
108
57
0
27 Feb 2019
Previous
1234
Next