ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.04731
  4. Cited By
Deep learning to represent sub-grid processes in climate models
v1v2v3 (latest)

Deep learning to represent sub-grid processes in climate models

12 June 2018
S. Rasp
Michael S. Pritchard
Pierre Gentine
    AI4ClAI4CE
ArXiv (abs)PDFHTML

Papers citing "Deep learning to represent sub-grid processes in climate models"

50 / 152 papers shown
Title
A Mass-Conserving-Perceptron for Machine Learning-Based Modeling of
  Geoscientific Systems
A Mass-Conserving-Perceptron for Machine Learning-Based Modeling of Geoscientific SystemsWater Resources Research (WRR), 2023
Yuan-Heng Wang
Hoshin V. Gupta
AI4CE
266
12
0
12 Oct 2023
Learning to Predict Structural Vibrations
Learning to Predict Structural VibrationsNeural Information Processing Systems (NeurIPS), 2023
J. V. Delden
Julius Schultz
Christopher Blech
Sabine C. Langer
Timo Luddecke
AI4CE
155
3
0
09 Oct 2023
AI Foundation Models for Weather and Climate: Applications, Design, and
  Implementation
AI Foundation Models for Weather and Climate: Applications, Design, and Implementation
S. K. Mukkavilli
Daniel Salles Civitarese
J. Schmude
Johannes Jakubik
Anne Jones
...
R. Ganti
Hendrik Hamann
U. Nair
Rahul Ramachandran
Kommy Weldemariam
AI4ClAI4CE
145
24
0
19 Sep 2023
Multi-fidelity climate model parameterization for better generalization
  and extrapolation
Multi-fidelity climate model parameterization for better generalization and extrapolation
Mohamed Aziz Bhouri
Liran Peng
Michael S. Pritchard
Pierre Gentine
AI4CE
164
6
0
19 Sep 2023
TCGAN: Convolutional Generative Adversarial Network for Time Series
  Classification and Clustering
TCGAN: Convolutional Generative Adversarial Network for Time Series Classification and ClusteringData mining and knowledge discovery (DMKD), 2023
F. Huang
Yangdong Deng
GANAI4TS
136
1
0
09 Sep 2023
Neuro-Symbolic Bi-Directional Translation -- Deep Learning
  Explainability for Climate Tipping Point Research
Neuro-Symbolic Bi-Directional Translation -- Deep Learning Explainability for Climate Tipping Point Research
C. Ashcraft
Jennifer Sleeman
Caroline Tang
Jay Brett
A. Gnanadesikan
115
2
0
19 Jun 2023
Learning Closed-form Equations for Subgrid-scale Closures from
  High-fidelity Data: Promises and Challenges
Learning Closed-form Equations for Subgrid-scale Closures from High-fidelity Data: Promises and ChallengesJournal of Advances in Modeling Earth Systems (JAMES), 2023
Karan Jakhar
Yifei Guan
R. Mojgani
Ashesh Chattopadhyay
Pedram Hassanzadeh
AI4ClAI4CE
296
20
0
08 Jun 2023
Gemtelligence: Accelerating Gemstone classification with Deep Learning
Gemtelligence: Accelerating Gemstone classification with Deep LearningCommunications Engineer (CE), 2023
Tommaso Bendinelli
Luca Biggio
D. Nyfeler
Abhigyan Ghosh
P. Tollan
M. Kirschmann
Olga Fink
92
6
0
31 May 2023
DiffESM: Conditional Emulation of Earth System Models with Diffusion
  Models
DiffESM: Conditional Emulation of Earth System Models with Diffusion Models
Seth Bassetti
Brian Hutchinson
Claudia Tebaldi
Ben Kravitz
DiffM
137
11
0
23 Apr 2023
Inductive biases in deep learning models for weather prediction
Inductive biases in deep learning models for weather prediction
Jannik Thümmel
Matthias Karlbauer
S. Otte
C. Zarfl
Georg Martius
...
Thomas Scholten
Ulrich Friedrich
V. Wulfmeyer
B. Goswami
Martin Volker Butz
AI4CE
223
7
0
06 Apr 2023
Machine learning with data assimilation and uncertainty quantification
  for dynamical systems: a review
Machine learning with data assimilation and uncertainty quantification for dynamical systems: a reviewIEEE/CAA Journal of Automatica Sinica (IEEE/CAA JAS), 2023
Sibo Cheng
César Quilodrán-Casas
Said Ouala
A. Farchi
Che Liu
...
Weiping Ding
Wenhan Luo
A. Carrassi
Marc Bocquet
Rossella Arcucci
AI4CE
179
188
0
18 Mar 2023
A topological classifier to characterize brain states: When shape
  matters more than variance
A topological classifier to characterize brain states: When shape matters more than variancePLoS ONE (PLoS ONE), 2023
Aina Ferrà
G. Cecchini
Fritz-Pere Nobbe Fisas
Carles Casacuberta
I. Cos
124
2
0
07 Mar 2023
Using Artificial Intelligence to aid Scientific Discovery of Climate
  Tipping Points
Using Artificial Intelligence to aid Scientific Discovery of Climate Tipping Points
Jennifer Sleeman
David Chung
C. Ashcraft
Jay Brett
A. Gnanadesikan
...
M. Pradal
R. Gelderloos
Caroline Tang
Anshu Saksena
Larry White
AI4CE
49
6
0
14 Feb 2023
Differentiable modeling to unify machine learning and physical models
  and advance Geosciences
Differentiable modeling to unify machine learning and physical models and advance Geosciences
Chaopeng Shen
A. Appling
Pierre Gentine
Toshiyuki Bandai
H. Gupta
...
Chris Rackauckas
Tirthankar Roy
Chonggang Xu
Binayak Mohanty
K. Lawson
AI4CE
291
16
0
10 Jan 2023
Myths and Legends in High-Performance Computing
Myths and Legends in High-Performance ComputingThe international journal of high performance computing applications (IJHPCA), 2023
Satoshi Matsuoka
Jens Domke
Mohamed Wahib
Aleksandr Drozd
Torsten Hoefler
291
15
0
06 Jan 2023
Learning Subgrid-scale Models with Neural Ordinary Differential
  Equations
Learning Subgrid-scale Models with Neural Ordinary Differential Equations
Shinhoo Kang
Emil M. Constantinescu
AI4CE
219
7
0
20 Dec 2022
Exploring Randomly Wired Neural Networks for Climate Model Emulation
Exploring Randomly Wired Neural Networks for Climate Model EmulationArtificial Intelligence for the Earth Systems (AIES), 2022
William Yik
Sam J. Silva
A. Geiss
D. Watson‐Parris
184
3
0
06 Dec 2022
Stochastic Parameterization of Column Physics using Generative
  Adversarial Networks
Stochastic Parameterization of Column Physics using Generative Adversarial NetworksEnvironmental Data Science (EDS), 2022
Balasubramanya T. Nadiga
Xiaoming Sun
Cody Nash
GAN
100
8
0
30 Nov 2022
Stabilizing Machine Learning Prediction of Dynamics: Noise and
  Noise-inspired Regularization
Stabilizing Machine Learning Prediction of Dynamics: Noise and Noise-inspired Regularization
Alexander Wikner
Joseph Harvey
M. Girvan
Brian R. Hunt
Andrew Pomerance
Thomas Antonsen
Edward Ott
138
7
0
09 Nov 2022
Embed and Emulate: Learning to estimate parameters of dynamical systems
  with uncertainty quantification
Embed and Emulate: Learning to estimate parameters of dynamical systems with uncertainty quantificationNeural Information Processing Systems (NeurIPS), 2022
Ruoxi Jiang
Rebecca Willett
131
6
0
03 Nov 2022
History-Based, Bayesian, Closure for Stochastic Parameterization:
  Application to Lorenz '96
History-Based, Bayesian, Closure for Stochastic Parameterization: Application to Lorenz '96
Mohamed Aziz Bhouri
Pierre Gentine
AI4TSAI4CE
144
6
0
26 Oct 2022
Online model error correction with neural networks in the incremental
  4D-Var framework
Online model error correction with neural networks in the incremental 4D-Var frameworkJournal of Advances in Modeling Earth Systems (JAMES), 2022
A. Farchi
M. Chrust
Marc Bocquet
P. Laloyaux
Massimo Bonavita
180
30
0
25 Oct 2022
GeoAI at ACM SIGSPATIAL: The New Frontier of Geospatial Artificial
  Intelligence Research
GeoAI at ACM SIGSPATIAL: The New Frontier of Geospatial Artificial Intelligence Research
D. Lunga
Yingjie Hu
Shawn D. Newsam
Song Gao
B. Martins
Hsiuhan Lexie Yang
XueQing Deng
AI4CE
114
4
0
20 Oct 2022
MAgNet: Mesh Agnostic Neural PDE Solver
MAgNet: Mesh Agnostic Neural PDE SolverNeural Information Processing Systems (NeurIPS), 2022
Oussama Boussif
D. Assouline
L. Benabbou
Yoshua Bengio
AI4CE
316
33
0
11 Oct 2022
Don't Waste Data: Transfer Learning to Leverage All Data for
  Machine-Learnt Climate Model Emulation
Don't Waste Data: Transfer Learning to Leverage All Data for Machine-Learnt Climate Model Emulation
R. Parthipan
Damon J. Wischik
111
4
0
08 Oct 2022
AutoML for Climate Change: A Call to Action
AutoML for Climate Change: A Call to Action
Renbo Tu
Nicholas Roberts
Vishak Prasad
Sibasis Nayak
P. Jain
Frederic Sala
Ganesh Ramakrishnan
Ameet Talwalkar
Willie Neiswanger
Colin White
148
6
0
07 Oct 2022
Accurate Long-term Air Temperature Prediction with a Fusion of
  Artificial Intelligence and Data Reduction Techniques
Accurate Long-term Air Temperature Prediction with a Fusion of Artificial Intelligence and Data Reduction Techniques
D. Fister
Jorge Pérez-Aracil
César Peláez-Rodríguez
Javier Del Ser
S. Salcedo-Sanz
129
2
0
29 Sep 2022
Towards Fine-Dining Recipe Generation with Generative Pre-trained
  Transformers
Towards Fine-Dining Recipe Generation with Generative Pre-trained Transformers
Konstantinos Katserelis
Konstantinos Skianis
124
3
0
26 Sep 2022
Differentiable Programming for Earth System Modeling
Differentiable Programming for Earth System ModelingGeoscientific Model Development (GMD), 2022
Maximilian Gelbrecht
Alistair J R White
S. Bathiany
Niklas Boers
193
23
0
29 Aug 2022
Efficient Climate Simulation via Machine Learning Method
Efficient Climate Simulation via Machine Learning Method
Xin Wang
Wei Xue
Yilun Han
Guangwen Yang
AILaw
115
2
0
15 Aug 2022
A Container-Based Workflow for Distributed Training of Deep Learning
  Algorithms in HPC Clusters
A Container-Based Workflow for Distributed Training of Deep Learning Algorithms in HPC ClustersCluster Computing (CC), 2022
Jose González-Abad
Álvaro López García
Valentin Kozlov
87
9
0
04 Aug 2022
Physics-Informed Learning of Aerosol Microphysics
Physics-Informed Learning of Aerosol MicrophysicsEnvironmental Data Science (EDS), 2022
P. Harder
D. Watson‐Parris
P. Stier
Dominik Strassel
N. Gauger
J. Keuper
111
23
0
24 Jul 2022
Multiscale Neural Operator: Learning Fast and Grid-independent PDE
  Solvers
Multiscale Neural Operator: Learning Fast and Grid-independent PDE Solvers
Björn Lütjens
Catherine H. Crawford
C. Watson
C. Hill
Dava Newman
AI4CE
108
11
0
23 Jul 2022
A Primer on Topological Data Analysis to Support Image Analysis Tasks in
  Environmental Science
A Primer on Topological Data Analysis to Support Image Analysis Tasks in Environmental Science
Lander Ver Hoef
Henry Adams
E. King
I. Ebert‐Uphoff
187
24
0
21 Jul 2022
Benchmark Dataset for Precipitation Forecasting by Post-Processing the
  Numerical Weather Prediction
Benchmark Dataset for Precipitation Forecasting by Post-Processing the Numerical Weather Prediction
Taehyeon Kim
Namgyu Ho
Donggyu Kim
Se-Young Yun
BDL
142
7
0
30 Jun 2022
Short-range forecasts of global precipitation using deep
  learning-augmented numerical weather prediction
Short-range forecasts of global precipitation using deep learning-augmented numerical weather prediction
Manmeet Singh
SB Vaisakh
N. Acharya
Aditya Grover
Suryachandra A. Rao
B. Kumar
Zong‐Liang Yang
D. Niyogi
AI4Cl
109
7
0
23 Jun 2022
Explaining the physics of transfer learning a data-driven subgrid-scale
  closure to a different turbulent flow
Explaining the physics of transfer learning a data-driven subgrid-scale closure to a different turbulent flowPNAS Nexus (PNAS Nexus), 2022
Adam Subel
Yifei Guan
Ashesh Chattopadhyay
Pedram Hassanzadeh
AI4CE
115
47
0
07 Jun 2022
Learning Green's functions associated with time-dependent partial
  differential equations
Learning Green's functions associated with time-dependent partial differential equationsJournal of machine learning research (JMLR), 2022
N. Boullé
Seick Kim
Tianyi Shi
Alex Townsend
AI4CE
207
28
0
27 Apr 2022
A posteriori learning for quasi-geostrophic turbulence parametrization
A posteriori learning for quasi-geostrophic turbulence parametrizationJournal of Advances in Modeling Earth Systems (JAMES), 2022
Hugo Frezat
Julien Le Sommer
Ronan Fablet
G. Balarac
Redouane Lguensat
142
64
0
08 Apr 2022
Using Probabilistic Machine Learning to Better Model Temporal Patterns
  in Parameterizations: a case study with the Lorenz 96 model
Using Probabilistic Machine Learning to Better Model Temporal Patterns in Parameterizations: a case study with the Lorenz 96 modelGeoscientific Model Development (GMD), 2022
R. Parthipan
H. Christensen
J. S. Hosking
Damon J. Wischik
AI4CE
125
10
0
28 Mar 2022
Simulating Liquids with Graph Networks
Simulating Liquids with Graph Networks
Jonathan Klimesch
Philipp Holl
Nils Thuerey
GNNAI4CE
146
12
0
14 Mar 2022
Machine learning for Earth System Science (ESS): A survey, status and
  future directions for South Asia
Machine learning for Earth System Science (ESS): A survey, status and future directions for South Asia
Manmeet Singh
B. Kumar
R. Chattopadhyay
K. Amarjyothi
Anup K. Sutar
Sukanta Roy
Suryachandra A. Rao
R. Nanjundiah
AI4Cl
110
1
0
24 Dec 2021
Machine Learning Emulation of Urban Land Surface Processes
Machine Learning Emulation of Urban Land Surface ProcessesJournal of Advances in Modeling Earth Systems (JAMES), 2021
David Meyer
S. Grimmond
P. Dueben
R. Hogan
M. Reeuwijk
102
19
0
21 Dec 2021
Deep Learning Based Cloud Cover Parameterization for ICON
Deep Learning Based Cloud Cover Parameterization for ICONJournal of Advances in Modeling Earth Systems (JAMES), 2021
Arthur Grundner
Tom Beucler
Pierre Gentine
Fernando Iglesias‐Suarez
M. Giorgetta
Veronika Eyring
148
31
0
21 Dec 2021
Climate-Invariant Machine Learning
Climate-Invariant Machine Learning
Tom Beucler
Pierre Gentine
J. Yuval
Ankitesh Gupta
Liran Peng
...
F. Ahmed
P. O’Gorman
J. Neelin
N. Lutsko
Michael S. Pritchard
OODAI4CE
212
85
0
14 Dec 2021
Output-weighted and relative entropy loss functions for deep learning
  precursors of extreme events
Output-weighted and relative entropy loss functions for deep learning precursors of extreme events
S. Rudy
T. Sapsis
177
18
0
01 Dec 2021
ClimART: A Benchmark Dataset for Emulating Atmospheric Radiative
  Transfer in Weather and Climate Models
ClimART: A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models
Salva Rühling Cachay
Venkatesh Ramesh
J. Cole
H. Barker
David Rolnick
92
21
0
29 Nov 2021
Short-term precipitation prediction using deep learning
Short-term precipitation prediction using deep learning
Guoxing Chen
Wei‐Chyung Wang
AI4Cl
119
36
0
05 Oct 2021
Discovery of interpretable structural model errors by combining Bayesian
  sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test
  case
Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test case
R. Mojgani
Ashesh Chattopadhyay
Pedram Hassanzadeh
157
18
0
01 Oct 2021
Paradigm Shift Through the Integration of Physical Methodology and Data
  Science
Paradigm Shift Through the Integration of Physical Methodology and Data Science
T. Miyamoto
AI4CE
78
0
0
30 Sep 2021
Previous
1234
Next