Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.04854
Cited By
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
13 June 2018
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam"
18 / 18 papers shown
Title
Spectral-factorized Positive-definite Curvature Learning for NN Training
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard E. Turner
Roger B. Grosse
34
0
0
10 Feb 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
P. Whalley
Neil K. Chada
B. Leimkuhler
BDL
24
4
0
14 Oct 2024
Manifold Sampling for Differentiable Uncertainty in Radiance Fields
Linjie Lyu
Ayush Tewari
Marc Habermann
Shunsuke Saito
Michael Zollhöfer
Thomas Leimkühler
Christian Theobalt
UQCV
18
1
0
19 Sep 2024
Function-Space MCMC for Bayesian Wide Neural Networks
Lucia Pezzetti
Stefano Favaro
Stefano Peluchetti
BDL
26
0
0
26 Aug 2024
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Emilia Magnani
Marvin Pfortner
Tobias Weber
Philipp Hennig
UQCV
45
1
0
07 Jun 2024
WeiPer: OOD Detection using Weight Perturbations of Class Projections
Maximilian Granz
Manuel Heurich
Tim Landgraf
OODD
27
1
0
27 May 2024
Variational Stochastic Gradient Descent for Deep Neural Networks
Haotian Chen
Anna Kuzina
Babak Esmaeili
Jakub M. Tomczak
27
0
0
09 Apr 2024
Model Merging by Uncertainty-Based Gradient Matching
Nico Daheim
Thomas Möllenhoff
E. Ponti
Iryna Gurevych
Mohammad Emtiyaz Khan
MoMe
FedML
19
43
0
19 Oct 2023
Law of Large Numbers for Bayesian two-layer Neural Network trained with Variational Inference
Arnaud Descours
Tom Huix
Arnaud Guillin
Manon Michel
Eric Moulines
Boris Nectoux
BDL
4
1
0
10 Jul 2023
Quantifying Model Uncertainty for Semantic Segmentation using Operators in the RKHS
Rishabh Singh
José C. Príncipe
UQCV
8
3
0
03 Nov 2022
Optimization for Amortized Inverse Problems
Tianci Liu
Tong Yang
Quan Zhang
Qi Lei
8
4
0
25 Oct 2022
Uncertainty-aware Evaluation of Time-Series Classification for Online Handwriting Recognition with Domain Shift
Andreas Klass
Sven M. Lorenz
M. Lauer-Schmaltz
David Rügamer
Bernd Bischl
Christopher Mutschler
Felix Ott
19
10
0
17 Jun 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
6
3
0
30 Jan 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
29
23
0
28 Jan 2022
Bayesian Image Reconstruction using Deep Generative Models
Razvan V. Marinescu
Daniel Moyer
Polina Golland
OOD
DiffM
10
37
0
08 Dec 2020
The Emerging Trends of Multi-Label Learning
Weiwei Liu
Haobo Wang
Xiaobo Shen
Ivor W. Tsang
25
244
0
23 Nov 2020
Efficient Per-Example Gradient Computations
Ian Goodfellow
140
73
0
07 Oct 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
243
9,042
0
06 Jun 2015
1