ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.06920
  4. Cited By
Maximum a Posteriori Policy Optimisation

Maximum a Posteriori Policy Optimisation

14 June 2018
A. Abdolmaleki
Jost Tobias Springenberg
Yuval Tassa
Rémi Munos
N. Heess
Martin Riedmiller
ArXivPDFHTML

Papers citing "Maximum a Posteriori Policy Optimisation"

36 / 136 papers shown
Title
Plan2Vec: Unsupervised Representation Learning by Latent Plans
Plan2Vec: Unsupervised Representation Learning by Latent Plans
Ge Yang
Amy Zhang
Ari S. Morcos
Joelle Pineau
Pieter Abbeel
Roberto Calandra
SSL
OffRL
28
27
0
07 May 2020
Self-Paced Deep Reinforcement Learning
Self-Paced Deep Reinforcement Learning
Pascal Klink
Carlo DÉramo
Jan Peters
Joni Pajarinen
ODL
38
54
0
24 Apr 2020
Leverage the Average: an Analysis of KL Regularization in RL
Leverage the Average: an Analysis of KL Regularization in RL
Nino Vieillard
Tadashi Kozuno
B. Scherrer
Olivier Pietquin
Rémi Munos
M. Geist
17
42
0
31 Mar 2020
An empirical investigation of the challenges of real-world reinforcement
  learning
An empirical investigation of the challenges of real-world reinforcement learning
Gabriel Dulac-Arnold
Nir Levine
D. Mankowitz
Jerry Li
Cosmin Paduraru
Sven Gowal
Todd Hester
OffRL
31
120
0
24 Mar 2020
Stable Policy Optimization via Off-Policy Divergence Regularization
Stable Policy Optimization via Off-Policy Divergence Regularization
Ahmed Touati
Amy Zhang
Joelle Pineau
Pascal Vincent
OffRL
22
17
0
09 Mar 2020
Rewriting History with Inverse RL: Hindsight Inference for Policy
  Improvement
Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement
Benjamin Eysenbach
Xinyang Geng
Sergey Levine
Ruslan Salakhutdinov
OffRL
18
86
0
25 Feb 2020
Keep Doing What Worked: Behavioral Modelling Priors for Offline
  Reinforcement Learning
Keep Doing What Worked: Behavioral Modelling Priors for Offline Reinforcement Learning
Noah Y. Siegel
Jost Tobias Springenberg
Felix Berkenkamp
A. Abdolmaleki
Michael Neunert
Thomas Lampe
Roland Hafner
Nicolas Heess
Martin Riedmiller
OffRL
22
282
0
19 Feb 2020
Adaptive Approximate Policy Iteration
Adaptive Approximate Policy Iteration
Botao Hao
N. Lazić
Yasin Abbasi-Yadkori
Pooria Joulani
Csaba Szepesvári
13
14
0
08 Feb 2020
Reinforcement Learning via Fenchel-Rockafellar Duality
Reinforcement Learning via Fenchel-Rockafellar Duality
Ofir Nachum
Bo Dai
OffRL
11
117
0
07 Jan 2020
Making Sense of Reinforcement Learning and Probabilistic Inference
Making Sense of Reinforcement Learning and Probabilistic Inference
Brendan O'Donoghue
Ian Osband
Catalin Ionescu
OffRL
22
47
0
03 Jan 2020
Continuous-Discrete Reinforcement Learning for Hybrid Control in
  Robotics
Continuous-Discrete Reinforcement Learning for Hybrid Control in Robotics
Michael Neunert
A. Abdolmaleki
Markus Wulfmeier
Thomas Lampe
Jost Tobias Springenberg
Roland Hafner
Francesco Romano
J. Buchli
N. Heess
Martin Riedmiller
13
91
0
02 Jan 2020
Better Exploration with Optimistic Actor-Critic
Better Exploration with Optimistic Actor-Critic
K. Ciosek
Q. Vuong
R. Loftin
Katja Hofmann
11
148
0
28 Oct 2019
Learning Data Manipulation for Augmentation and Weighting
Learning Data Manipulation for Augmentation and Weighting
Zhiting Hu
Bowen Tan
Ruslan Salakhutdinov
Tom Michael Mitchell
Eric P. Xing
21
116
0
28 Oct 2019
Imagined Value Gradients: Model-Based Policy Optimization with
  Transferable Latent Dynamics Models
Imagined Value Gradients: Model-Based Policy Optimization with Transferable Latent Dynamics Models
Arunkumar Byravan
Jost Tobias Springenberg
A. Abdolmaleki
Roland Hafner
Michael Neunert
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
OffRL
11
41
0
09 Oct 2019
Augmenting learning using symmetry in a biologically-inspired domain
Augmenting learning using symmetry in a biologically-inspired domain
Shruti Mishra
A. Abdolmaleki
A. Guez
Piotr Trochim
Doina Precup
22
8
0
01 Oct 2019
V-MPO: On-Policy Maximum a Posteriori Policy Optimization for Discrete
  and Continuous Control
V-MPO: On-Policy Maximum a Posteriori Policy Optimization for Discrete and Continuous Control
H. F. Song
A. Abdolmaleki
Jost Tobias Springenberg
Aidan Clark
Hubert Soyer
...
Dhruva Tirumala
N. Heess
Dan Belov
Martin Riedmiller
M. Botvinick
29
121
0
26 Sep 2019
On the Theory of Policy Gradient Methods: Optimality, Approximation, and
  Distribution Shift
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
Alekh Agarwal
Sham Kakade
J. Lee
G. Mahajan
11
315
0
01 Aug 2019
Integration of Imitation Learning using GAIL and Reinforcement Learning
  using Task-achievement Rewards via Probabilistic Graphical Model
Integration of Imitation Learning using GAIL and Reinforcement Learning using Task-achievement Rewards via Probabilistic Graphical Model
Akira Kinose
T. Taniguchi
30
20
0
03 Jul 2019
Modified Actor-Critics
Modified Actor-Critics
Erinc Merdivan
S. Hanke
M. Geist
19
2
0
02 Jul 2019
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a
  Latent Variable Model
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model
Alex X. Lee
Anusha Nagabandi
Pieter Abbeel
Sergey Levine
OffRL
BDL
25
371
0
01 Jul 2019
Compositional Transfer in Hierarchical Reinforcement Learning
Compositional Transfer in Hierarchical Reinforcement Learning
Markus Wulfmeier
A. Abdolmaleki
Roland Hafner
Jost Tobias Springenberg
Michael Neunert
Tim Hertweck
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
14
27
0
26 Jun 2019
Neural Proximal/Trust Region Policy Optimization Attains Globally
  Optimal Policy
Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy
Boyi Liu
Qi Cai
Zhuoran Yang
Zhaoran Wang
22
108
0
25 Jun 2019
Entropic Risk Measure in Policy Search
Entropic Risk Measure in Policy Search
David Nass
Boris Belousov
Jan Peters
17
26
0
21 Jun 2019
Policy Search by Target Distribution Learning for Continuous Control
Policy Search by Target Distribution Learning for Continuous Control
Chuheng Zhang
Yuanqi Li
Jian Li
19
6
0
27 May 2019
A Regularized Opponent Model with Maximum Entropy Objective
A Regularized Opponent Model with Maximum Entropy Objective
Zheng Tian
Ying Wen
Zhichen Gong
Faiz Punakkath
Shihao Zou
Jun Wang
27
30
0
17 May 2019
Q-Learning for Continuous Actions with Cross-Entropy Guided Policies
Q-Learning for Continuous Actions with Cross-Entropy Guided Policies
Riley Simmons-Edler
Ben Eisner
E. Mitchell
Sebastian Seung
Daniel D. Lee
18
28
0
25 Mar 2019
Value constrained model-free continuous control
Value constrained model-free continuous control
Steven Bohez
A. Abdolmaleki
Michael Neunert
J. Buchli
N. Heess
R. Hadsell
16
62
0
12 Feb 2019
Learning to Walk via Deep Reinforcement Learning
Learning to Walk via Deep Reinforcement Learning
Tuomas Haarnoja
Sehoon Ha
Aurick Zhou
Jie Tan
George Tucker
Sergey Levine
17
433
0
26 Dec 2018
Relative Entropy Regularized Policy Iteration
Relative Entropy Regularized Policy Iteration
A. Abdolmaleki
Jost Tobias Springenberg
Jonas Degrave
Steven Bohez
Yuval Tassa
Dan Belov
N. Heess
Martin Riedmiller
14
72
0
05 Dec 2018
VIREL: A Variational Inference Framework for Reinforcement Learning
VIREL: A Variational Inference Framework for Reinforcement Learning
M. Fellows
Anuj Mahajan
Tim G. J. Rudner
Shimon Whiteson
DRL
22
53
0
03 Nov 2018
Actor-Critic Policy Optimization in Partially Observable Multiagent
  Environments
Actor-Critic Policy Optimization in Partially Observable Multiagent Environments
S. Srinivasan
Marc Lanctot
V. Zambaldi
Julien Perolat
K. Tuyls
Rémi Munos
Michael Bowling
6
148
0
21 Oct 2018
PPO-CMA: Proximal Policy Optimization with Covariance Matrix Adaptation
PPO-CMA: Proximal Policy Optimization with Covariance Matrix Adaptation
Perttu Hämäläinen
Amin Babadi
Xiaoxiao Ma
J. Lehtinen
29
62
0
05 Oct 2018
Supervised Policy Update for Deep Reinforcement Learning
Supervised Policy Update for Deep Reinforcement Learning
Q. Vuong
Yiming Zhang
Keith Ross
11
20
0
29 May 2018
Reinforcement Learning and Control as Probabilistic Inference: Tutorial
  and Review
Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review
Sergey Levine
AI4CE
BDL
22
656
0
02 May 2018
Expected Policy Gradients for Reinforcement Learning
Expected Policy Gradients for Reinforcement Learning
K. Ciosek
Shimon Whiteson
39
51
0
10 Jan 2018
Emergence of Locomotion Behaviours in Rich Environments
Emergence of Locomotion Behaviours in Rich Environments
N. Heess
TB Dhruva
S. Sriram
Jay Lemmon
J. Merel
...
Tom Erez
Ziyun Wang
S. M. Ali Eslami
Martin Riedmiller
David Silver
134
928
0
07 Jul 2017
Previous
123